Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,13 @@ import torch
|
|
3 |
import torch.nn as nn
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
|
|
6 |
import logging
|
7 |
|
8 |
-
# Set up logging
|
9 |
logging.basicConfig(level=logging.DEBUG)
|
10 |
|
11 |
-
# Define the model architecture
|
12 |
class BacterialMorphologyClassifier(nn.Module):
|
13 |
def __init__(self):
|
14 |
super(BacterialMorphologyClassifier, self).__init__()
|
@@ -34,51 +35,48 @@ class BacterialMorphologyClassifier(nn.Module):
|
|
34 |
x = self.fc(x)
|
35 |
return x
|
36 |
|
37 |
-
# Load the model
|
38 |
MODEL_PATH = "https://huggingface.co/yolac/BacterialMorphologyClassification/resolve/main/model.pth"
|
|
|
39 |
model = BacterialMorphologyClassifier()
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
logging.info("Model loaded successfully.")
|
45 |
-
except Exception as e:
|
46 |
-
logging.error(f"Error loading the model: {e}")
|
47 |
-
raise
|
48 |
|
49 |
-
#
|
50 |
transform = transforms.Compose([
|
51 |
transforms.Resize((224, 224)),
|
52 |
transforms.ToTensor(),
|
53 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
54 |
])
|
55 |
|
|
|
56 |
def predict(image):
|
57 |
try:
|
58 |
-
|
59 |
image_tensor = transform(image).unsqueeze(0)
|
60 |
|
61 |
# Make prediction
|
62 |
output = model(image_tensor)
|
63 |
prediction = output.argmax().item()
|
64 |
-
|
65 |
-
|
66 |
-
logging.debug(f"Model output: {output}, Prediction: {prediction}, Confidence: {confidence}")
|
67 |
-
|
68 |
# Class mapping
|
69 |
class_labels = {0: 'cocci', 1: 'bacilli', 2: 'spirilla'}
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
except Exception as e:
|
73 |
-
logging.error(f"Error during prediction: {e}")
|
74 |
-
return
|
75 |
|
76 |
-
# Create Gradio
|
77 |
-
gr.
|
78 |
-
|
79 |
-
|
80 |
-
outputs=["text", "number"],
|
81 |
-
examples=[
|
82 |
["https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%20290.jpg"],
|
83 |
["https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%20565.jpg"],
|
84 |
["https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%208.jpg"]
|
|
|
3 |
import torch.nn as nn
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
6 |
+
import io
|
7 |
import logging
|
8 |
|
9 |
+
# Set up logging for debugging
|
10 |
logging.basicConfig(level=logging.DEBUG)
|
11 |
|
12 |
+
# Define the model architecture that matches the saved .pth file
|
13 |
class BacterialMorphologyClassifier(nn.Module):
|
14 |
def __init__(self):
|
15 |
super(BacterialMorphologyClassifier, self).__init__()
|
|
|
35 |
x = self.fc(x)
|
36 |
return x
|
37 |
|
38 |
+
# Load the model and weights
|
39 |
MODEL_PATH = "https://huggingface.co/yolac/BacterialMorphologyClassification/resolve/main/model.pth"
|
40 |
+
logging.debug("Starting model loading...")
|
41 |
model = BacterialMorphologyClassifier()
|
42 |
+
state_dict = torch.hub.load_state_dict_from_url(MODEL_PATH, map_location=torch.device('cpu'))
|
43 |
+
model.load_state_dict(state_dict, strict=False)
|
44 |
+
model.eval()
|
45 |
+
logging.debug("Model loaded successfully.")
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Define image preprocessing transformations
|
48 |
transform = transforms.Compose([
|
49 |
transforms.Resize((224, 224)),
|
50 |
transforms.ToTensor(),
|
51 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
52 |
])
|
53 |
|
54 |
+
# Define the prediction function
|
55 |
def predict(image):
|
56 |
try:
|
57 |
+
# Preprocess the image
|
58 |
image_tensor = transform(image).unsqueeze(0)
|
59 |
|
60 |
# Make prediction
|
61 |
output = model(image_tensor)
|
62 |
prediction = output.argmax().item()
|
63 |
+
|
|
|
|
|
|
|
64 |
# Class mapping
|
65 |
class_labels = {0: 'cocci', 1: 'bacilli', 2: 'spirilla'}
|
66 |
+
|
67 |
+
# Log prediction details
|
68 |
+
logging.debug(f"Predicted class: {class_labels[prediction]}, Confidence: {output.max().item()}")
|
69 |
+
|
70 |
+
# Return prediction result
|
71 |
+
return class_labels[prediction], float(output.max().item())
|
72 |
except Exception as e:
|
73 |
+
logging.error(f"Error during prediction: {str(e)}")
|
74 |
+
return "Error", 0.0
|
75 |
|
76 |
+
# Create a Gradio interface
|
77 |
+
inputs = gr.Image(type="pil", label="Upload an image")
|
78 |
+
outputs = gr.Label(num_top_classes=3, label="Predicted Class")
|
79 |
+
examples=[
|
|
|
|
|
80 |
["https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%20290.jpg"],
|
81 |
["https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%20565.jpg"],
|
82 |
["https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%208.jpg"]
|