Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,44 @@
|
|
1 |
import torch
|
|
|
|
|
2 |
from fastapi import FastAPI, UploadFile, File
|
3 |
from pydantic import BaseModel
|
4 |
from io import BytesIO
|
5 |
from PIL import Image
|
6 |
-
from torchvision import transforms
|
7 |
-
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
8 |
|
9 |
-
# Initialize the FastAPI app
|
10 |
app = FastAPI()
|
11 |
|
12 |
-
# Load the model
|
13 |
-
model =
|
14 |
-
|
|
|
15 |
|
16 |
# Define the image preprocessing transform
|
17 |
preprocess = transforms.Compose([
|
18 |
-
transforms.Resize((224, 224)),
|
19 |
transforms.ToTensor(),
|
20 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
21 |
])
|
22 |
|
23 |
# Helper function to preprocess the image
|
24 |
def preprocess_image(image: Image.Image):
|
25 |
-
image = image.convert("RGB")
|
26 |
image = preprocess(image)
|
27 |
-
image = image.unsqueeze(0)
|
28 |
return image
|
29 |
|
30 |
-
# Define the prediction endpoint
|
31 |
@app.post("/predict/")
|
32 |
async def predict(file: UploadFile = File(...)):
|
33 |
try:
|
34 |
-
# Read the
|
35 |
image_data = await file.read()
|
36 |
image = Image.open(BytesIO(image_data))
|
37 |
-
|
38 |
-
# Preprocess the image
|
39 |
image_tensor = preprocess_image(image)
|
40 |
|
41 |
# Perform inference
|
42 |
-
model.eval()
|
43 |
with torch.no_grad():
|
44 |
outputs = model(image_tensor)
|
45 |
-
|
46 |
-
predicted_class_idx = torch.argmax(logits, dim=1).item()
|
47 |
|
48 |
# Map the predicted class index to the class labels
|
49 |
class_labels = ["Cocci", "Bacilli", "Spirilla"] # Replace with your actual class labels
|
@@ -54,4 +49,4 @@ async def predict(file: UploadFile = File(...)):
|
|
54 |
except Exception as e:
|
55 |
return {"error": str(e)}
|
56 |
|
57 |
-
# Run the app
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import models, transforms
|
4 |
from fastapi import FastAPI, UploadFile, File
|
5 |
from pydantic import BaseModel
|
6 |
from io import BytesIO
|
7 |
from PIL import Image
|
|
|
|
|
8 |
|
|
|
9 |
app = FastAPI()
|
10 |
|
11 |
+
# Load the pretrained MobileNetV2 model from torchvision
|
12 |
+
model = models.mobilenet_v2(pretrained=True)
|
13 |
+
model.classifier[1] = nn.Linear(model.last_channel, 3) # Replace with the number of classes in your task
|
14 |
+
model.eval()
|
15 |
|
16 |
# Define the image preprocessing transform
|
17 |
preprocess = transforms.Compose([
|
18 |
+
transforms.Resize((224, 224)),
|
19 |
transforms.ToTensor(),
|
20 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
21 |
])
|
22 |
|
23 |
# Helper function to preprocess the image
|
24 |
def preprocess_image(image: Image.Image):
|
25 |
+
image = image.convert("RGB")
|
26 |
image = preprocess(image)
|
27 |
+
image = image.unsqueeze(0)
|
28 |
return image
|
29 |
|
|
|
30 |
@app.post("/predict/")
|
31 |
async def predict(file: UploadFile = File(...)):
|
32 |
try:
|
33 |
+
# Read and preprocess the image
|
34 |
image_data = await file.read()
|
35 |
image = Image.open(BytesIO(image_data))
|
|
|
|
|
36 |
image_tensor = preprocess_image(image)
|
37 |
|
38 |
# Perform inference
|
|
|
39 |
with torch.no_grad():
|
40 |
outputs = model(image_tensor)
|
41 |
+
predicted_class_idx = torch.argmax(outputs, dim=1).item()
|
|
|
42 |
|
43 |
# Map the predicted class index to the class labels
|
44 |
class_labels = ["Cocci", "Bacilli", "Spirilla"] # Replace with your actual class labels
|
|
|
49 |
except Exception as e:
|
50 |
return {"error": str(e)}
|
51 |
|
52 |
+
# Run the app with: uvicorn app:app --reload
|