Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,100 @@
|
|
1 |
-
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from torchvision import transforms
|
4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Load the model
|
7 |
-
|
8 |
-
|
9 |
-
model = torch.load(model_path, map_location=torch.device('cpu'))
|
10 |
-
model.eval() # Set model to evaluation mode
|
11 |
-
return model
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
# Define
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Prediction function
|
19 |
-
def
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
)
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Launch the app
|
52 |
if __name__ == "__main__":
|
53 |
-
|
54 |
-
app.launch()
|
55 |
-
|
56 |
-
|
|
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
from torchvision import transforms
|
4 |
from PIL import Image
|
5 |
+
import requests
|
6 |
+
import gradio as gr
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Define the model architecture
|
10 |
+
class BacterialMorphologyClassifier(nn.Module):
|
11 |
+
def __init__(self):
|
12 |
+
super(BacterialMorphologyClassifier, self).__init__()
|
13 |
+
self.feature_extractor = nn.Sequential(
|
14 |
+
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
|
15 |
+
nn.ReLU(),
|
16 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
17 |
+
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
|
18 |
+
nn.ReLU(),
|
19 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
20 |
+
)
|
21 |
+
self.fc = nn.Sequential(
|
22 |
+
nn.Flatten(),
|
23 |
+
nn.Linear(64 * 56 * 56, 128),
|
24 |
+
nn.ReLU(),
|
25 |
+
nn.Dropout(0.5),
|
26 |
+
nn.Linear(128, 3),
|
27 |
+
nn.Softmax(dim=1),
|
28 |
+
)
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
x = self.feature_extractor(x)
|
32 |
+
x = self.fc(x)
|
33 |
+
return x
|
34 |
|
35 |
# Load the model
|
36 |
+
MODEL_PATH = "model.pth"
|
37 |
+
model = BacterialMorphologyClassifier()
|
|
|
|
|
|
|
38 |
|
39 |
+
try:
|
40 |
+
# Download the model if it doesn't exist
|
41 |
+
if not os.path.exists(MODEL_PATH):
|
42 |
+
print("Downloading the model...")
|
43 |
+
url = "https://huggingface.co/yolac/BacterialMorphologyClassification/resolve/main/model.pth"
|
44 |
+
response = requests.get(url)
|
45 |
+
with open(MODEL_PATH, "wb") as f:
|
46 |
+
f.write(response.content)
|
47 |
+
# Load the model weights
|
48 |
+
model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device('cpu')))
|
49 |
+
model.eval()
|
50 |
+
print("Model loaded successfully.")
|
51 |
+
except Exception as e:
|
52 |
+
print(f"Error loading the model: {e}")
|
53 |
|
54 |
+
# Define image preprocessing to match training preprocessing
|
55 |
+
transform = transforms.Compose([
|
56 |
+
transforms.Resize((224, 224)), # Resize to match model input size
|
57 |
+
transforms.ToTensor(), # Convert to a tensor
|
58 |
+
transforms.Normalize(mean=[0, 0, 0], std=[1/255, 1/255, 1/255]), # Scale pixel values to [0, 1]
|
59 |
+
])
|
60 |
|
61 |
# Prediction function
|
62 |
+
def predict(image):
|
63 |
+
try:
|
64 |
+
# Convert the image to a tensor
|
65 |
+
image_tensor = transform(image).unsqueeze(0)
|
66 |
+
|
67 |
+
# Perform prediction
|
68 |
+
with torch.no_grad(): # Ensure no gradients are calculated
|
69 |
+
output = model(image_tensor)
|
70 |
+
|
71 |
+
# Class mapping
|
72 |
+
class_labels = {0: 'cocci', 1: 'bacilli', 2: 'spirilla'}
|
73 |
+
|
74 |
+
# Return the predicted class and confidence
|
75 |
+
predicted_class = class_labels[output.argmax().item()]
|
76 |
+
confidence = output.max().item() # Softmax value as confidence
|
77 |
+
return f"Predicted Class: {predicted_class}\nConfidence: {confidence:.2f}"
|
78 |
+
except Exception as e:
|
79 |
+
return f"Error: {str(e)}"
|
80 |
+
|
81 |
+
# Define example images
|
82 |
+
examples = [
|
83 |
+
["https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%20290.jpg"],
|
84 |
+
["https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%20565.jpg"],
|
85 |
+
["https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%208.jpg"],
|
86 |
+
]
|
87 |
+
|
88 |
+
# Set up Gradio interface
|
89 |
+
interface = gr.Interface(
|
90 |
+
fn=predict,
|
91 |
+
inputs=gr.Image(type="pil"),
|
92 |
+
outputs=gr.Text(label="Prediction"),
|
93 |
+
title="Bacterial Morphology Classification",
|
94 |
+
description="Upload an image of bacteria to classify it as cocci, bacilli, or spirilla.",
|
95 |
+
examples=examples,
|
96 |
+
)
|
97 |
|
98 |
# Launch the app
|
99 |
if __name__ == "__main__":
|
100 |
+
interface.launch()
|
|
|
|
|
|