Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,50 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import torch.nn as nn
|
4 |
-
from torchvision import transforms
|
5 |
from PIL import Image
|
|
|
6 |
import logging
|
7 |
|
8 |
# Set up logging for debugging
|
9 |
logging.basicConfig(level=logging.DEBUG)
|
10 |
|
11 |
-
#
|
12 |
-
class BacterialMorphologyClassifier(nn.Module):
|
13 |
-
def __init__(self):
|
14 |
-
super(BacterialMorphologyClassifier, self).__init__()
|
15 |
-
self.feature_extractor = nn.Sequential(
|
16 |
-
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
|
17 |
-
nn.ReLU(),
|
18 |
-
nn.MaxPool2d(kernel_size=2, stride=2),
|
19 |
-
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
|
20 |
-
nn.ReLU(),
|
21 |
-
nn.MaxPool2d(kernel_size=2, stride=2),
|
22 |
-
)
|
23 |
-
self.fc = nn.Sequential(
|
24 |
-
nn.Flatten(),
|
25 |
-
nn.Linear(64 * 56 * 56, 128),
|
26 |
-
nn.ReLU(),
|
27 |
-
nn.Dropout(0.5),
|
28 |
-
nn.Linear(128, 3),
|
29 |
-
nn.Softmax(dim=1),
|
30 |
-
)
|
31 |
-
|
32 |
-
def forward(self, x):
|
33 |
-
x = self.feature_extractor(x)
|
34 |
-
x = self.fc(x)
|
35 |
-
return x
|
36 |
-
|
37 |
-
# Load the model and weights
|
38 |
MODEL_PATH = "https://huggingface.co/yolac/BacterialMorphologyClassification/resolve/main/model.keras"
|
39 |
logging.debug("Starting model loading...")
|
40 |
try:
|
41 |
-
model =
|
42 |
-
state_dict = torch.hub.load_state_dict_from_url(MODEL_PATH, map_location=torch.device('cpu'))
|
43 |
-
model.load_state_dict(state_dict, strict=False)
|
44 |
-
model.eval()
|
45 |
logging.debug("Model loaded successfully.")
|
46 |
except Exception as e:
|
47 |
logging.error(f"Error loading the model: {str(e)}")
|
48 |
|
49 |
# Define image preprocessing transformations
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
55 |
|
56 |
# Define the prediction function
|
57 |
def predict(image):
|
58 |
try:
|
59 |
-
logging.debug("Starting prediction...")
|
60 |
# Preprocess the image
|
61 |
-
|
62 |
logging.debug("Image preprocessing completed.")
|
63 |
|
64 |
# Make prediction
|
65 |
-
|
66 |
-
prediction =
|
67 |
|
68 |
# Class mapping
|
69 |
class_labels = {0: 'cocci', 1: 'bacilli', 2: 'spirilla'}
|
70 |
|
71 |
# Log prediction details
|
72 |
-
logging.debug(f"Predicted class: {class_labels[prediction]}, Confidence: {
|
73 |
|
74 |
# Return prediction result
|
75 |
-
return class_labels[prediction], float(
|
76 |
except Exception as e:
|
77 |
logging.error(f"Error during prediction: {str(e)}")
|
78 |
return "Error", 0.0
|
|
|
1 |
import gradio as gr
|
2 |
+
import tensorflow as tf
|
|
|
|
|
3 |
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
import logging
|
6 |
|
7 |
# Set up logging for debugging
|
8 |
logging.basicConfig(level=logging.DEBUG)
|
9 |
|
10 |
+
# Load the .keras model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
MODEL_PATH = "https://huggingface.co/yolac/BacterialMorphologyClassification/resolve/main/model.keras"
|
12 |
logging.debug("Starting model loading...")
|
13 |
try:
|
14 |
+
model = tf.keras.models.load_model(MODEL_PATH)
|
|
|
|
|
|
|
15 |
logging.debug("Model loaded successfully.")
|
16 |
except Exception as e:
|
17 |
logging.error(f"Error loading the model: {str(e)}")
|
18 |
|
19 |
# Define image preprocessing transformations
|
20 |
+
def preprocess_image(image):
|
21 |
+
logging.debug("Preprocessing image...")
|
22 |
+
image = image.resize((224, 224)) # Resize to match model input size
|
23 |
+
image_array = np.array(image) / 255.0 # Normalize pixel values
|
24 |
+
if len(image_array.shape) == 2: # If grayscale, convert to RGB
|
25 |
+
image_array = np.stack([image_array] * 3, axis=-1)
|
26 |
+
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
27 |
+
return image_array
|
28 |
|
29 |
# Define the prediction function
|
30 |
def predict(image):
|
31 |
try:
|
|
|
32 |
# Preprocess the image
|
33 |
+
image_array = preprocess_image(image)
|
34 |
logging.debug("Image preprocessing completed.")
|
35 |
|
36 |
# Make prediction
|
37 |
+
predictions = model.predict(image_array)
|
38 |
+
prediction = np.argmax(predictions, axis=1)[0]
|
39 |
|
40 |
# Class mapping
|
41 |
class_labels = {0: 'cocci', 1: 'bacilli', 2: 'spirilla'}
|
42 |
|
43 |
# Log prediction details
|
44 |
+
logging.debug(f"Predicted class: {class_labels[prediction]}, Confidence: {predictions[0][prediction]}")
|
45 |
|
46 |
# Return prediction result
|
47 |
+
return class_labels[prediction], float(predictions[0][prediction])
|
48 |
except Exception as e:
|
49 |
logging.error(f"Error during prediction: {str(e)}")
|
50 |
return "Error", 0.0
|