Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,12 @@ import torch.nn as nn
|
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
6 |
import io
|
|
|
7 |
|
8 |
-
#
|
|
|
|
|
|
|
9 |
class BacterialMorphologyClassifier(nn.Module):
|
10 |
def __init__(self):
|
11 |
super(BacterialMorphologyClassifier, self).__init__()
|
@@ -31,56 +35,53 @@ class BacterialMorphologyClassifier(nn.Module):
|
|
31 |
x = self.fc(x)
|
32 |
return x
|
33 |
|
34 |
-
# Load the model
|
35 |
-
model = BacterialMorphologyClassifier()
|
36 |
MODEL_PATH = "https://huggingface.co/yolac/BacterialMorphologyClassification/resolve/main/model.pth"
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
#
|
42 |
transform = transforms.Compose([
|
43 |
transforms.Resize((224, 224)),
|
44 |
transforms.ToTensor(),
|
45 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
46 |
])
|
47 |
|
48 |
-
# Define Gradio interface
|
49 |
def predict(image):
|
50 |
try:
|
51 |
-
|
52 |
image_tensor = transform(image).unsqueeze(0)
|
53 |
|
54 |
# Make prediction
|
55 |
output = model(image_tensor)
|
56 |
prediction = output.argmax().item()
|
57 |
confidence = output.max().item()
|
58 |
-
|
59 |
-
|
60 |
-
print(f"Predicted: {prediction}, Confidence: {confidence}")
|
61 |
-
print(f"Model Output: {output}")
|
62 |
|
63 |
# Class mapping
|
64 |
class_labels = {0: 'cocci', 1: 'bacilli', 2: 'spirilla'}
|
65 |
-
|
66 |
-
# Return prediction result
|
67 |
return class_labels[prediction], confidence
|
|
|
68 |
except Exception as e:
|
|
|
69 |
return {'error': str(e)}
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
iface = gr.Interface(
|
74 |
fn=predict,
|
75 |
-
inputs=gr.Image(type="pil", label="Upload an image"),
|
76 |
-
outputs=[
|
77 |
examples=[
|
78 |
-
"https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%20290.jpg",
|
79 |
-
"https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%20565.jpg",
|
80 |
-
"https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%208.jpg"
|
81 |
]
|
82 |
-
)
|
83 |
-
|
84 |
-
# Launch the app
|
85 |
-
if __name__ == "__main__":
|
86 |
-
iface.launch()
|
|
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
6 |
import io
|
7 |
+
import logging
|
8 |
|
9 |
+
# Set up logging
|
10 |
+
logging.basicConfig(level=logging.DEBUG)
|
11 |
+
|
12 |
+
# Define the model architecture
|
13 |
class BacterialMorphologyClassifier(nn.Module):
|
14 |
def __init__(self):
|
15 |
super(BacterialMorphologyClassifier, self).__init__()
|
|
|
35 |
x = self.fc(x)
|
36 |
return x
|
37 |
|
38 |
+
# Load the model
|
|
|
39 |
MODEL_PATH = "https://huggingface.co/yolac/BacterialMorphologyClassification/resolve/main/model.pth"
|
40 |
+
model = BacterialMorphologyClassifier()
|
41 |
+
try:
|
42 |
+
state_dict = torch.hub.load_state_dict_from_url(MODEL_PATH, map_location=torch.device('cpu'))
|
43 |
+
model.load_state_dict(state_dict, strict=False)
|
44 |
+
model.eval()
|
45 |
+
logging.info("Model loaded successfully.")
|
46 |
+
except Exception as e:
|
47 |
+
logging.error(f"Error loading the model: {e}")
|
48 |
+
raise
|
49 |
|
50 |
+
# Image preprocessing transformations
|
51 |
transform = transforms.Compose([
|
52 |
transforms.Resize((224, 224)),
|
53 |
transforms.ToTensor(),
|
54 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
55 |
])
|
56 |
|
|
|
57 |
def predict(image):
|
58 |
try:
|
59 |
+
logging.info("Received image for prediction.")
|
60 |
image_tensor = transform(image).unsqueeze(0)
|
61 |
|
62 |
# Make prediction
|
63 |
output = model(image_tensor)
|
64 |
prediction = output.argmax().item()
|
65 |
confidence = output.max().item()
|
66 |
+
|
67 |
+
logging.debug(f"Model output: {output}, Prediction: {prediction}, Confidence: {confidence}")
|
|
|
|
|
68 |
|
69 |
# Class mapping
|
70 |
class_labels = {0: 'cocci', 1: 'bacilli', 2: 'spirilla'}
|
|
|
|
|
71 |
return class_labels[prediction], confidence
|
72 |
+
|
73 |
except Exception as e:
|
74 |
+
logging.error(f"Error during prediction: {e}")
|
75 |
return {'error': str(e)}
|
76 |
|
77 |
+
# Create Gradio app
|
78 |
+
gr.Interface(
|
|
|
79 |
fn=predict,
|
80 |
+
inputs=gr.inputs.Image(type="pil", label="Upload an image"),
|
81 |
+
outputs=["text", "number"],
|
82 |
examples=[
|
83 |
+
["https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%20290.jpg"],
|
84 |
+
["https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%20565.jpg"],
|
85 |
+
["https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%208.jpg"]
|
86 |
]
|
87 |
+
).launch(debug=True)
|
|
|
|
|
|
|
|