yolloo commited on
Commit
100cf44
·
verified ·
1 Parent(s): 47446bd

Upload whisper_server (3).py

Browse files
Files changed (1) hide show
  1. whisper_server (3).py +65 -0
whisper_server (3).py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ import tempfile
4
+ from flask import request, jsonify
5
+ from transformers import pipeline
6
+ import torch
7
+ import traceback
8
+
9
+ # Define a writable directory for the model cache.
10
+ # This now respects the HF_HOME environment variable set in the Dockerfile.
11
+ cache_dir = os.environ.get("HF_HOME", "/tmp/.cache")
12
+ os.makedirs(cache_dir, exist_ok=True)
13
+
14
+
15
+ print("Loading openai/whisper-tiny model via transformers pipeline...")
16
+
17
+ # Determine device
18
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
19
+
20
+ # Initialize the ASR pipeline with the lightweight model
21
+ model = pipeline(
22
+ "automatic-speech-recognition",
23
+ model="openai/whisper-tiny",
24
+ device=device,
25
+ model_kwargs={"cache_dir": cache_dir}
26
+ )
27
+
28
+ print("Whisper model loaded.")
29
+
30
+ def handle_transcribe():
31
+ try:
32
+ # Step 1: Validate request - looking for 'audio' key from frontend
33
+ if 'audio' not in request.files:
34
+ print("Error: 'audio' key not in request.files")
35
+ return jsonify({'error': 'No audio file part in the request'}), 400
36
+
37
+ file = request.files['audio']
38
+
39
+ if file.filename == '':
40
+ print("Error: No selected file")
41
+ return jsonify({'error': 'No selected file'}), 400
42
+
43
+ # Step 2: Use a temporary file to save the upload
44
+ with tempfile.NamedTemporaryFile(delete=True, suffix=".webm") as temp_audio:
45
+ file.save(temp_audio.name)
46
+
47
+ print(f"Transcribing file: {temp_audio.name} with openai/whisper-tiny pipeline for Hindi.")
48
+
49
+ # Step 3: Transcribe using the pipeline with language-specific configuration
50
+ # This tells Whisper to process the audio as Hindi.
51
+ result = model(
52
+ temp_audio.name,
53
+ generate_kwargs={"language": "hindi", "task": "transcribe"}
54
+ )
55
+
56
+ transcribed_text = result.get('text', '')
57
+
58
+ print("Transcription successful.")
59
+ return jsonify({'text': transcribed_text})
60
+
61
+ except Exception as e:
62
+ # Step 4: Robust error logging
63
+ print("❌ Error in handle_transcribe():")
64
+ traceback.print_exc()
65
+ return jsonify({'error': f"An unexpected error occurred during transcription: {str(e)}"}), 500