Upload 3 files
Browse files- qamatcher_server.py +69 -0
- qgen_server.py +38 -0
- whisper_server (1).py +61 -0
qamatcher_server.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
from flask import request, jsonify
|
4 |
+
from sentence_transformers import SentenceTransformer, util
|
5 |
+
|
6 |
+
# Define a writable directory for the model cache
|
7 |
+
cache_dir = os.path.join(os.getenv("XDG_CACHE_HOME", "/tmp/.cache"), "huggingface_models")
|
8 |
+
os.makedirs(cache_dir, exist_ok=True)
|
9 |
+
|
10 |
+
print("Loading SentenceTransformer model (paraphrase-MiniLM-L6-v2)...")
|
11 |
+
matcher_model = SentenceTransformer('paraphrase-MiniLM-L6-v2', cache_folder=cache_dir)
|
12 |
+
print("SentenceTransformer model loaded.")
|
13 |
+
|
14 |
+
# Define a threshold for a "good" match
|
15 |
+
SIMILARITY_THRESHOLD = 0.6
|
16 |
+
|
17 |
+
def handle_match_question():
|
18 |
+
data = request.get_json()
|
19 |
+
if not data or 'user_question' not in data or 'documents' not in data:
|
20 |
+
return jsonify({'error': 'Invalid request. "user_question" and "documents" are required.'}), 400
|
21 |
+
|
22 |
+
user_question = data['user_question']
|
23 |
+
documents = data['documents']
|
24 |
+
|
25 |
+
if not documents:
|
26 |
+
return jsonify({'answer': "There are no notes to search."})
|
27 |
+
|
28 |
+
# Flatten the list of questions from all documents
|
29 |
+
all_questions = []
|
30 |
+
# Map each question to the original note text
|
31 |
+
question_to_note_map = {}
|
32 |
+
|
33 |
+
for doc in documents:
|
34 |
+
note_text = doc.get('note_text', '')
|
35 |
+
for q in doc.get('questions', []):
|
36 |
+
all_questions.append(q)
|
37 |
+
question_to_note_map[q] = note_text
|
38 |
+
|
39 |
+
if not all_questions:
|
40 |
+
return jsonify({'answer': "No questions have been generated for your notes yet."})
|
41 |
+
|
42 |
+
try:
|
43 |
+
# Encode the user's question and all stored questions
|
44 |
+
user_embedding = matcher_model.encode(user_question, convert_to_tensor=True)
|
45 |
+
stored_embeddings = matcher_model.encode(all_questions, convert_to_tensor=True)
|
46 |
+
|
47 |
+
# Compute cosine similarity
|
48 |
+
cosine_scores = util.pytorch_cos_sim(user_embedding, stored_embeddings)
|
49 |
+
|
50 |
+
# Find the best match
|
51 |
+
best_match_idx = cosine_scores.argmax()
|
52 |
+
best_score = float(cosine_scores[0][best_match_idx])
|
53 |
+
best_question = all_questions[best_match_idx]
|
54 |
+
|
55 |
+
print(f"User Question: '{user_question}'")
|
56 |
+
print(f"Best matched stored question: '{best_question}' with score: {best_score:.4f}")
|
57 |
+
|
58 |
+
# Check if the match is good enough
|
59 |
+
if best_score > SIMILARITY_THRESHOLD:
|
60 |
+
# Return the note associated with the best-matched question
|
61 |
+
answer = question_to_note_map[best_question]
|
62 |
+
else:
|
63 |
+
answer = "Sorry, I couldn't find a relevant note to answer your question."
|
64 |
+
|
65 |
+
return jsonify({'answer': answer})
|
66 |
+
|
67 |
+
except Exception as e:
|
68 |
+
print(f"Error during question matching: {e}")
|
69 |
+
return jsonify({'error': str(e)}), 500
|
qgen_server.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
from flask import request, jsonify
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
# Define a writable directory for the model cache
|
7 |
+
cache_dir = os.path.join(os.getenv("XDG_CACHE_HOME", "/tmp/.cache"), "huggingface_models")
|
8 |
+
os.makedirs(cache_dir, exist_ok=True)
|
9 |
+
|
10 |
+
print("Loading Question Generation model (iarfmoose/t5-base-question-generator)...")
|
11 |
+
# Initialize the pipeline for text2text-generation with the specified model
|
12 |
+
qg_model = pipeline("text2text-generation", model="iarfmoose/t5-base-question-generator", model_kwargs={"cache_dir": cache_dir})
|
13 |
+
print("Question Generation model loaded.")
|
14 |
+
|
15 |
+
def handle_generate_questions():
|
16 |
+
data = request.get_json()
|
17 |
+
if not data or 'text' not in data:
|
18 |
+
return jsonify({'error': 'Invalid request. "text" field is required.'}), 400
|
19 |
+
|
20 |
+
text = data['text']
|
21 |
+
|
22 |
+
# Prepend the text with "generate questions: " as required by this model
|
23 |
+
input_text = f"generate questions: {text}"
|
24 |
+
|
25 |
+
try:
|
26 |
+
# Generate questions
|
27 |
+
results = qg_model(input_text, max_length=64, num_beams=4, early_stopping=True)
|
28 |
+
|
29 |
+
# The result is a single string with questions separated by '<sep>'
|
30 |
+
generated_text = results[0]['generated_text']
|
31 |
+
questions = [q.strip() for q in generated_text.split('<sep>') if q.strip()]
|
32 |
+
|
33 |
+
print(f"Generated questions for text: '{text[:50]}...' -> {questions}")
|
34 |
+
|
35 |
+
return jsonify({'questions': questions})
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Error during question generation: {e}")
|
38 |
+
return jsonify({'error': str(e)}), 500
|
whisper_server (1).py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
from flask import request, jsonify
|
5 |
+
from transformers import pipeline
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Define a writable directory for the model cache
|
9 |
+
cache_dir = os.path.join(os.getenv("XDG_CACHE_HOME", "/tmp/.cache"), "huggingface_models")
|
10 |
+
os.makedirs(cache_dir, exist_ok=True)
|
11 |
+
|
12 |
+
print("Loading collabora/whisper-tiny-hindi model via transformers pipeline...")
|
13 |
+
|
14 |
+
# Determine device
|
15 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
+
# Initialize the ASR pipeline with the specified model
|
18 |
+
# Using the transformers pipeline is the correct way to load custom models from the Hub.
|
19 |
+
model = pipeline(
|
20 |
+
"automatic-speech-recognition",
|
21 |
+
model="collabora/whisper-tiny-hindi",
|
22 |
+
device=device,
|
23 |
+
model_kwargs={"cache_dir": cache_dir}
|
24 |
+
)
|
25 |
+
|
26 |
+
print("Whisper model loaded.")
|
27 |
+
|
28 |
+
def handle_transcribe():
|
29 |
+
if 'file' not in request.files:
|
30 |
+
return jsonify({'error': 'No file part in the request'}), 400
|
31 |
+
|
32 |
+
file = request.files['file']
|
33 |
+
|
34 |
+
if file.filename == '':
|
35 |
+
return jsonify({'error': 'No selected file'}), 400
|
36 |
+
|
37 |
+
if file:
|
38 |
+
# Use a temporary file to save the upload
|
39 |
+
with tempfile.NamedTemporaryFile(delete=True, suffix=".webm") as temp_audio:
|
40 |
+
file.save(temp_audio.name)
|
41 |
+
|
42 |
+
try:
|
43 |
+
print(f"Transcribing file: {temp_audio.name} with collabora/whisper-tiny-hindi pipeline")
|
44 |
+
|
45 |
+
# The pipeline expects a file path and handles the processing.
|
46 |
+
result = model(temp_audio.name)
|
47 |
+
|
48 |
+
transcribed_text = result.get('text', '')
|
49 |
+
|
50 |
+
print("Transcription successful.")
|
51 |
+
return jsonify({'text': transcribed_text})
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error during transcription: {e}")
|
54 |
+
# Provide a more specific error if possible
|
55 |
+
error_message = f"An unexpected error occurred during transcription: {str(e)}"
|
56 |
+
if "out of memory" in str(e).lower():
|
57 |
+
error_message = "The model ran out of memory. Please try a smaller audio file or check server resources."
|
58 |
+
|
59 |
+
return jsonify({'error': error_message}), 500
|
60 |
+
|
61 |
+
return jsonify({'error': 'File processing failed'}), 500
|