yolloo commited on
Commit
38da277
·
verified ·
1 Parent(s): c3adfe1

Delete qamatcher_server.py

Browse files
Files changed (1) hide show
  1. qamatcher_server.py +0 -69
qamatcher_server.py DELETED
@@ -1,69 +0,0 @@
1
-
2
- import os
3
- from flask import request, jsonify
4
- from sentence_transformers import SentenceTransformer, util
5
-
6
- # Define a writable directory for the model cache
7
- cache_dir = os.path.join(os.getenv("XDG_CACHE_HOME", "/tmp/.cache"), "huggingface_models")
8
- os.makedirs(cache_dir, exist_ok=True)
9
-
10
- print("Loading SentenceTransformer model (paraphrase-MiniLM-L6-v2)...")
11
- matcher_model = SentenceTransformer('paraphrase-MiniLM-L6-v2', cache_folder=cache_dir)
12
- print("SentenceTransformer model loaded.")
13
-
14
- # Define a threshold for a "good" match
15
- SIMILARITY_THRESHOLD = 0.6
16
-
17
- def handle_match_question():
18
- data = request.get_json()
19
- if not data or 'user_question' not in data or 'documents' not in data:
20
- return jsonify({'error': 'Invalid request. "user_question" and "documents" are required.'}), 400
21
-
22
- user_question = data['user_question']
23
- documents = data['documents']
24
-
25
- if not documents:
26
- return jsonify({'answer': "There are no notes to search."})
27
-
28
- # Flatten the list of questions from all documents
29
- all_questions = []
30
- # Map each question to the original note text
31
- question_to_note_map = {}
32
-
33
- for doc in documents:
34
- note_text = doc.get('note_text', '')
35
- for q in doc.get('questions', []):
36
- all_questions.append(q)
37
- question_to_note_map[q] = note_text
38
-
39
- if not all_questions:
40
- return jsonify({'answer': "No questions have been generated for your notes yet."})
41
-
42
- try:
43
- # Encode the user's question and all stored questions
44
- user_embedding = matcher_model.encode(user_question, convert_to_tensor=True)
45
- stored_embeddings = matcher_model.encode(all_questions, convert_to_tensor=True)
46
-
47
- # Compute cosine similarity
48
- cosine_scores = util.pytorch_cos_sim(user_embedding, stored_embeddings)
49
-
50
- # Find the best match
51
- best_match_idx = cosine_scores.argmax()
52
- best_score = float(cosine_scores[0][best_match_idx])
53
- best_question = all_questions[best_match_idx]
54
-
55
- print(f"User Question: '{user_question}'")
56
- print(f"Best matched stored question: '{best_question}' with score: {best_score:.4f}")
57
-
58
- # Check if the match is good enough
59
- if best_score > SIMILARITY_THRESHOLD:
60
- # Return the note associated with the best-matched question
61
- answer = question_to_note_map[best_question]
62
- else:
63
- answer = "Sorry, I couldn't find a relevant note to answer your question."
64
-
65
- return jsonify({'answer': answer})
66
-
67
- except Exception as e:
68
- print(f"Error during question matching: {e}")
69
- return jsonify({'error': str(e)}), 500