File size: 10,609 Bytes
37170d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import numpy as np
import cv2
from typing import Tuple, List
BONE_NAMES = [
"A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8",
"J0", "J1", "J2", "J3", "J4", "J5", "J6", "J7", "J8",
"B0", "C0", "D0", "E0", "F0", "G0", "H0", "I0",
"B8", "C8", "D8", "E8", "F8", "G8", "H8", "I8",
]
def check_keypoints(keypoints: np.ndarray):
"""
检查关键点坐标是否正确
@param keypoints: 关键点坐标, shape 为 (34, 2)
"""
if keypoints.shape != (34, 2):
raise Exception(f"keypoints shape error: {keypoints.shape}")
def build_cells_xywh_by_cronners(corner_points: np.ndarray, padding: int = 3) -> np.ndarray:
"""
根据 棋盘的 corner 点坐标 计算 每个位置的 xywh
@param corner_points: 棋盘的 corner 点坐标, shape 为 (4, 2)
@param padding: 棋盘边框 padding
@return: 棋盘的 xywh, shape 为 (10, 9, 4), 4 为 center_x, center_y, w, h
"""
if corner_points.shape != (4, 2):
raise Exception(f"corner_points shape error: {corner_points.shape}")
top_left_xy = corner_points[0]
top_right_xy = corner_points[1]
bottom_left_xy = corner_points[2]
bottom_right_xy = corner_points[3]
# 计算 每个框的 w 和 h
item_w = (top_right_xy[0] - top_left_xy[0]) / (9 - 1)
item_h = (bottom_left_xy[1] - top_left_xy[1]) / (10 - 1)
item_w = item_w
item_h = item_h
item_w_with_padding = item_w - padding * 2
item_h_with_padding = item_h - padding * 2
# 计算 每个框的 center 坐标
cells_xywh = np.zeros((10, 9, 4))
for i in range(10):
for j in range(9):
center_x = top_left_xy[0] + item_w * j
center_y = top_left_xy[1] + item_h * i
cells_xywh[i, j] = [center_x, center_y, item_w_with_padding, item_h_with_padding]
return cells_xywh
# todo: 需要优化
def build_cells_xywh(keypoints: np.ndarray, width: int = 450, height: int = 500, padding: int = 3) -> np.ndarray:
"""
@param keypoints: 关键点坐标, shape 为 (34, 2)
@param width: 棋盘宽度
@param height: 棋盘高度
@param padding: 棋盘边框 padding
@return: 棋盘的 xywh, shape 为 (10, 9, 4), 4 为 center_x, center_y, w, h
"""
check_keypoints(keypoints)
# 生成 A0 到 J8 的坐标, 如 B1 坐标 为 A1-J1 与 B0-B8 的交集点
cells_xywh = np.zeros((10, 9, 4), dtype=np.int16)
# 遍历 full_points 的每个点,计算其坐标
for i in range(10):
for j in range(9):
# 计算 第 i 行 第 j 列 的坐标
row_name = chr(ord('A') + i)
col_name = str(j)
flag_name = f"{row_name}{col_name}"
if flag_name in BONE_NAMES:
# 计算 第 i 行 第 j 列 的坐标
cur_xy = keypoints[BONE_NAMES.index(flag_name)]
cells_xywh[i, j] = [cur_xy[0], cur_xy[1], 0, 0]
else:
# 计算 第 i 行 第 j 列 的坐标
row_start_name = f"{row_name}0"
row_end_name = f"{row_name}8"
col_start_name = f"A{col_name}"
col_end_name = f"J{col_name}"
row_start_xy = keypoints[BONE_NAMES.index(row_start_name)]
row_end_xy = keypoints[BONE_NAMES.index(row_end_name)]
col_start_xy = keypoints[BONE_NAMES.index(col_start_name)]
col_end_xy = keypoints[BONE_NAMES.index(col_end_name)]
# 计算 row_start_xy 到 row_end_xy 的直线 与 col_start_xy 到 col_end_xy 的直线 的交点
# 使用参数方程法计算交点
x1, y1 = row_start_xy # 横向直线起点
x2, y2 = row_end_xy # 横向直线终点
x3, y3 = col_start_xy # 纵向直线起点
x4, y4 = col_end_xy # 纵向直线终点
# 计算交点坐标
# 使用克莱姆法则求解
denominator = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
# 计算交点的 x 坐标
x = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / denominator
# 计算交点的 y 坐标
y = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / denominator
cells_xywh[i, j] = [int(x), int(y), 0, 0]
# 计算每个点位的 wh
for i in range(10):
for j in range(9):
cur_xy = cells_xywh[i, j]
# 获取上下左右 4 个点, 根据 4 个点计算 wh, 宽高为 4 个点 计算出来的 x1y1x2y2 的距离 的 1/2
if i == 0:
# [i+1, j] 的 反向点
up_xy = 2 * cur_xy - cells_xywh[i+1, j]
else:
up_xy = cells_xywh[i - 1, j]
if i == 9:
# [i-1, j] 的 反向点
down_xy = 2 * cur_xy - cells_xywh[i-1, j]
else:
down_xy = cells_xywh[i+1, j]
if j == 0:
left_xy = 2 * cur_xy - cells_xywh[i, j+1]
else:
left_xy = cells_xywh[i, j-1]
if j == 8:
right_xy = 2 * cur_xy - cells_xywh[i, j-1]
else:
right_xy = cells_xywh[i, j+1]
min_x = min(up_xy[0].tolist(), down_xy[0].tolist(), left_xy[0].tolist(), right_xy[0].tolist())
min_y = min(up_xy[1].tolist(), down_xy[1].tolist(), left_xy[1].tolist(), right_xy[1].tolist())
min_x += padding
min_y += padding
# 防止 min_x 和 min_y 为 0
min_x = max(min_x, 1)
min_y = max(min_y, 1)
max_x = max(up_xy[0].tolist(), down_xy[0].tolist(), left_xy[0].tolist(), right_xy[0].tolist())
max_y = max(up_xy[1].tolist(), down_xy[1].tolist(), left_xy[1].tolist(), right_xy[1].tolist())
max_x -= padding
max_y -= padding
# 防止 max_x 和 max_y 超出边界
max_x = min(max_x, width - 1)
max_y = min(max_y, height - 1)
w = (max_x - min_x) / 2
h = (max_y - min_y) / 2
cells_xywh[i, j] = [int(cur_xy[0]), int(cur_xy[1]), int(w), int(h)]
return cells_xywh
def perspective_transform(
image: cv2.UMat,
src_points: np.ndarray,
keypoints: np.ndarray,
dst_size=(450, 500)) -> Tuple[cv2.UMat, np.ndarray, np.ndarray]:
"""
透视变换
@param image: 图片
@param src_points: 源点坐标
@param keypoints: 关键点坐标
@param dst_size: 目标尺寸 (width, height) 10 行 9 列
@return:
result: 透视变换后的图片
transformed_keypoints: 透视变换后的关键点坐标
corner_points: 棋盘的 corner 点坐标, shape 为 (4, 2) A0, A8, J0, J8
"""
check_keypoints(keypoints)
# 源点和目标点
src = np.float32(src_points)
padding = 50
corner_points = np.float32([
# 左上角
[padding, padding],
# 右上角
[dst_size[0]-padding, padding],
# 左下角
[padding, dst_size[1]-padding],
# 右下角
[dst_size[0]-padding, dst_size[1]-padding]])
# 计算透视变换矩阵
matrix = cv2.getPerspectiveTransform(src, corner_points)
# 执行透视变换
result = cv2.warpPerspective(image, matrix, dst_size)
# 重塑数组为要求的格式 (N,1,2)
keypoints_reshaped = keypoints.reshape(-1, 1, 2).astype(np.float32)
transformed_keypoints = cv2.perspectiveTransform(keypoints_reshaped, matrix)
# 转回原来的形状
transformed_keypoints = transformed_keypoints.reshape(-1, 2)
return result, transformed_keypoints, corner_points
def get_board_corner_points(keypoints: np.ndarray) -> np.ndarray:
"""
计算棋局四个边角的 points
@param keypoints: 关键点坐标, shape 为 (34, 2)
@return: 边角的坐标, shape 为 (4, 2)
"""
check_keypoints(keypoints)
# 找到 A0 A8 J0 J8 的坐标 以及 A4 和 J4 的坐标
a0_index = BONE_NAMES.index("A0")
a8_index = BONE_NAMES.index("A8")
j0_index = BONE_NAMES.index("J0")
j8_index = BONE_NAMES.index("J8")
a0_xy = keypoints[a0_index]
a8_xy = keypoints[a8_index]
j0_xy = keypoints[j0_index]
j8_xy = keypoints[j8_index]
# 计算新的四个角点坐标
dst_points = np.array([
a0_xy,
a8_xy,
j0_xy,
j8_xy
], dtype=np.float32)
return dst_points
def extract_chessboard(img: cv2.UMat, keypoints: np.ndarray) -> Tuple[cv2.UMat, np.ndarray, np.ndarray]:
"""
提取棋盘信息
@param img: 图片
@param keypoints: 关键点坐标, shape 为 (34, 2)
@return:
transformed_image: 透视变换后的图片
transformed_keypoints: 透视变换后的关键点坐标
transformed_corner_points: 棋盘的 corner 点坐标, shape 为 (4, 2) A0, A8, J0, J8
"""
check_keypoints(keypoints)
source_corner_points = get_board_corner_points(keypoints)
transformed_image, transformed_keypoints, transformed_corner_points = perspective_transform(img, source_corner_points, keypoints)
return transformed_image, transformed_keypoints, transformed_corner_points
def collect_cells_images(image: cv2.UMat, cells_xywh: np.ndarray) -> List[List[np.ndarray]]:
"""
收集 棋盘的 cells_xywh 对应的图片集合
"""
width = image.shape[1]
height = image.shape[0]
crop_cells: List[List[np.ndarray]] = []
for i in range(10):
row_cells = []
for j in range(9):
x, y, w, h = cells_xywh[i, j]
x_0 = max(int(x-w/2), 0)
y_0 = max(int(y-h/2), 0)
x_1 = min(int(x+w/2), width-1)
y_1 = min(int(y+h/2), height-1)
crop_img = image[y_0:y_1, x_0:x_1]
row_cells.append(crop_img)
crop_cells.append(row_cells)
return crop_cells
def draw_cells_box(image: cv2.UMat, cells_xywh: np.ndarray) -> cv2.UMat:
"""
绘制 棋盘的 cells_xywh 对应的 矩形框
"""
width = image.shape[1]
height = image.shape[0]
for i in range(10):
for j in range(9):
x, y, w, h = cells_xywh[i, j]
x_0 = max(int(x-w/2), 0)
y_0 = max(int(y-h/2), 0)
x_1 = min(int(x+w/2), width-1)
y_1 = min(int(y+h/2), height-1)
cv2.rectangle(image,(x_0, y_0), (x_1, y_1), (0, 0, 255), 1)
return image
|