File size: 10,609 Bytes
37170d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import numpy as np
import cv2
from typing import Tuple, List


BONE_NAMES = [
    "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8",
    "J0", "J1", "J2", "J3", "J4", "J5", "J6", "J7", "J8",
    "B0", "C0", "D0", "E0", "F0", "G0", "H0", "I0",
    "B8", "C8", "D8", "E8", "F8", "G8", "H8", "I8",
]

def check_keypoints(keypoints: np.ndarray):
    """
    检查关键点坐标是否正确
    @param keypoints: 关键点坐标, shape 为 (34, 2)
    """
    if keypoints.shape != (34, 2):
        raise Exception(f"keypoints shape error: {keypoints.shape}")


def build_cells_xywh_by_cronners(corner_points: np.ndarray, padding: int = 3) -> np.ndarray:
    """
    根据 棋盘的 corner 点坐标 计算 每个位置的 xywh
    @param corner_points: 棋盘的 corner 点坐标, shape 为 (4, 2)
    @param padding: 棋盘边框 padding

    @return: 棋盘的 xywh, shape 为 (10, 9, 4), 4 为 center_x, center_y, w, h
    """

    if corner_points.shape != (4, 2):
        raise Exception(f"corner_points shape error: {corner_points.shape}")
    
    top_left_xy = corner_points[0]
    top_right_xy = corner_points[1]
    bottom_left_xy = corner_points[2]
    bottom_right_xy = corner_points[3]
    
    # 计算 每个框的 w 和 h
    item_w = (top_right_xy[0] - top_left_xy[0]) / (9 - 1)
    item_h = (bottom_left_xy[1] - top_left_xy[1]) / (10 - 1)

    item_w = item_w
    item_h = item_h

    item_w_with_padding = item_w - padding * 2
    item_h_with_padding = item_h - padding * 2
    
    # 计算 每个框的 center 坐标
    cells_xywh = np.zeros((10, 9, 4))

    for i in range(10):
        for j in range(9):
            center_x = top_left_xy[0] + item_w * j
            center_y = top_left_xy[1] + item_h * i

            cells_xywh[i, j] = [center_x, center_y, item_w_with_padding, item_h_with_padding]

    return cells_xywh



# todo: 需要优化
def build_cells_xywh(keypoints: np.ndarray, width: int = 450, height: int = 500, padding: int = 3) -> np.ndarray:
    """
    @param keypoints: 关键点坐标, shape 为 (34, 2)
    @param width: 棋盘宽度
    @param height: 棋盘高度
    @param padding: 棋盘边框 padding
    @return: 棋盘的 xywh, shape 为 (10, 9, 4), 4 为 center_x, center_y, w, h
    """
    check_keypoints(keypoints)


    # 生成 A0 到 J8 的坐标, 如 B1 坐标 为 A1-J1 与 B0-B8 的交集点
    cells_xywh = np.zeros((10, 9, 4), dtype=np.int16)

    # 遍历 full_points 的每个点,计算其坐标
    for i in range(10):
        for j in range(9):
            # 计算 第 i 行 第 j 列 的坐标
            row_name = chr(ord('A') + i)
            col_name = str(j)
            flag_name = f"{row_name}{col_name}"
            if flag_name in BONE_NAMES:
                # 计算 第 i 行 第 j 列 的坐标
                cur_xy = keypoints[BONE_NAMES.index(flag_name)]
                cells_xywh[i, j] = [cur_xy[0], cur_xy[1], 0, 0]
            else:
                # 计算 第 i 行 第 j 列 的坐标
                row_start_name = f"{row_name}0"
                row_end_name = f"{row_name}8"
                
                col_start_name = f"A{col_name}"
                col_end_name = f"J{col_name}"

                row_start_xy = keypoints[BONE_NAMES.index(row_start_name)]
                row_end_xy = keypoints[BONE_NAMES.index(row_end_name)]

                col_start_xy = keypoints[BONE_NAMES.index(col_start_name)]
                col_end_xy = keypoints[BONE_NAMES.index(col_end_name)]

                # 计算 row_start_xy 到 row_end_xy 的直线 与 col_start_xy 到 col_end_xy 的直线 的交点
                # 使用参数方程法计算交点
                x1, y1 = row_start_xy  # 横向直线起点
                x2, y2 = row_end_xy    # 横向直线终点
                x3, y3 = col_start_xy  # 纵向直线起点
                x4, y4 = col_end_xy    # 纵向直线终点

                # 计算交点坐标
                # 使用克莱姆法则求解
                denominator = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
                
                # 计算交点的 x 坐标
                x = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / denominator
                # 计算交点的 y 坐标
                y = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / denominator
                
                cells_xywh[i, j] = [int(x), int(y), 0, 0]

    # 计算每个点位的 wh
    for i in range(10):
        for j in range(9):
            cur_xy = cells_xywh[i, j]
            # 获取上下左右 4 个点, 根据 4 个点计算 wh, 宽高为 4 个点 计算出来的 x1y1x2y2 的距离 的 1/2
            if i == 0:
                # [i+1, j] 的 反向点
                up_xy = 2 * cur_xy - cells_xywh[i+1, j]
            else:
                up_xy = cells_xywh[i - 1, j]
            
            if i == 9:
                # [i-1, j] 的 反向点
                down_xy = 2 * cur_xy - cells_xywh[i-1, j]
            else:
                down_xy = cells_xywh[i+1, j]

            if j == 0:
                left_xy = 2 * cur_xy - cells_xywh[i, j+1]
            else:
                left_xy = cells_xywh[i, j-1]

            if j == 8:
                right_xy = 2 * cur_xy - cells_xywh[i, j-1]
            else:
                right_xy = cells_xywh[i, j+1]

            min_x = min(up_xy[0].tolist(), down_xy[0].tolist(), left_xy[0].tolist(), right_xy[0].tolist())
            min_y = min(up_xy[1].tolist(), down_xy[1].tolist(), left_xy[1].tolist(), right_xy[1].tolist())

            min_x += padding
            min_y += padding

            # 防止 min_x 和 min_y 为 0
            min_x = max(min_x, 1)
            min_y = max(min_y, 1)

            max_x = max(up_xy[0].tolist(), down_xy[0].tolist(), left_xy[0].tolist(), right_xy[0].tolist())
            max_y = max(up_xy[1].tolist(), down_xy[1].tolist(), left_xy[1].tolist(), right_xy[1].tolist())

            max_x -= padding
            max_y -= padding

            # 防止 max_x 和 max_y 超出边界
            max_x = min(max_x, width - 1)
            max_y = min(max_y, height - 1)

            w = (max_x - min_x) / 2
            h = (max_y - min_y) / 2

            cells_xywh[i, j] = [int(cur_xy[0]), int(cur_xy[1]), int(w), int(h)]

    return cells_xywh


def perspective_transform(
        image: cv2.UMat, 
        src_points: np.ndarray, 
        keypoints: np.ndarray,
        dst_size=(450, 500)) -> Tuple[cv2.UMat, np.ndarray, np.ndarray]:
    """
    透视变换
    @param image: 图片
    @param src_points: 源点坐标
    @param keypoints: 关键点坐标
    @param dst_size: 目标尺寸 (width, height) 10 行 9 列

    @return:
        result: 透视变换后的图片
        transformed_keypoints: 透视变换后的关键点坐标
        corner_points: 棋盘的 corner 点坐标, shape 为 (4, 2) A0, A8, J0, J8
    """

    check_keypoints(keypoints)


    # 源点和目标点
    src = np.float32(src_points)
    padding = 50
    corner_points = np.float32([
        # 左上角
        [padding, padding], 
        # 右上角
        [dst_size[0]-padding, padding], 
        # 左下角
        [padding, dst_size[1]-padding], 
        # 右下角
        [dst_size[0]-padding, dst_size[1]-padding]])

    # 计算透视变换矩阵
    matrix = cv2.getPerspectiveTransform(src, corner_points)

    # 执行透视变换
    result = cv2.warpPerspective(image, matrix, dst_size)

    # 重塑数组为要求的格式 (N,1,2)
    keypoints_reshaped = keypoints.reshape(-1, 1, 2).astype(np.float32)
    transformed_keypoints = cv2.perspectiveTransform(keypoints_reshaped, matrix)
    # 转回原来的形状
    transformed_keypoints = transformed_keypoints.reshape(-1, 2)

    return result, transformed_keypoints, corner_points



def get_board_corner_points(keypoints: np.ndarray) -> np.ndarray:
    """
    计算棋局四个边角的 points
    @param keypoints: 关键点坐标, shape 为 (34, 2)
    @return: 边角的坐标, shape 为 (4, 2)
    """
    check_keypoints(keypoints)

    # 找到 A0 A8 J0 J8 的坐标 以及 A4 和 J4 的坐标
    a0_index = BONE_NAMES.index("A0")
    a8_index = BONE_NAMES.index("A8")
    j0_index = BONE_NAMES.index("J0")
    j8_index = BONE_NAMES.index("J8")

    a0_xy = keypoints[a0_index]
    a8_xy = keypoints[a8_index]
    j0_xy = keypoints[j0_index]
    j8_xy = keypoints[j8_index]

    # 计算新的四个角点坐标
    dst_points = np.array([
        a0_xy,
        a8_xy,
        j0_xy,
        j8_xy
    ], dtype=np.float32)

    return dst_points

def extract_chessboard(img: cv2.UMat, keypoints: np.ndarray) -> Tuple[cv2.UMat, np.ndarray, np.ndarray]:
    """
    提取棋盘信息
    @param img: 图片
    @param keypoints: 关键点坐标, shape 为 (34, 2)
    @return:
        transformed_image: 透视变换后的图片
        transformed_keypoints: 透视变换后的关键点坐标
        transformed_corner_points: 棋盘的 corner 点坐标, shape 为 (4, 2) A0, A8, J0, J8
    """

    check_keypoints(keypoints)

    source_corner_points = get_board_corner_points(keypoints)

    transformed_image, transformed_keypoints, transformed_corner_points = perspective_transform(img, source_corner_points, keypoints)

    return transformed_image, transformed_keypoints, transformed_corner_points


def collect_cells_images(image: cv2.UMat, cells_xywh: np.ndarray) -> List[List[np.ndarray]]:
    """
    收集 棋盘的 cells_xywh 对应的图片集合
    """
    width = image.shape[1]
    height = image.shape[0]
    crop_cells: List[List[np.ndarray]] = []

    for i in range(10):
        row_cells = []
        for j in range(9):
            x, y, w, h = cells_xywh[i, j]

            x_0 = max(int(x-w/2), 0)
            y_0 = max(int(y-h/2), 0)
            x_1 = min(int(x+w/2), width-1)
            y_1 = min(int(y+h/2), height-1)

            crop_img = image[y_0:y_1, x_0:x_1]
            row_cells.append(crop_img)
        crop_cells.append(row_cells)

    return crop_cells

def draw_cells_box(image: cv2.UMat, cells_xywh: np.ndarray) -> cv2.UMat:
    """
    绘制 棋盘的 cells_xywh 对应的 矩形框
    """
    width = image.shape[1]
    height = image.shape[0]
    for i in range(10):
        for j in range(9):
            x, y, w, h = cells_xywh[i, j]

            x_0 = max(int(x-w/2), 0)
            y_0 = max(int(y-h/2), 0)
            x_1 = min(int(x+w/2), width-1)
            y_1 = min(int(y+h/2), height-1)

            cv2.rectangle(image,(x_0, y_0), (x_1, y_1), (0, 0, 255), 1)

    return image