File size: 7,031 Bytes
37170d6 5873e33 9316eb4 19a60be 37170d6 19a60be 37170d6 19a60be 37170d6 19a60be 9316eb4 5873e33 9316eb4 5873e33 9316eb4 5873e33 2a190c0 37170d6 ec71a6c 19a60be ec71a6c 9316eb4 37170d6 ec71a6c 19a60be 37170d6 19a60be 37170d6 9316eb4 ec71a6c 19a60be 9316eb4 37170d6 9316eb4 4bcaf91 9316eb4 37170d6 9316eb4 19a60be 37170d6 9316eb4 19a60be 9316eb4 4bcaf91 37170d6 19a60be 37170d6 19a60be 37170d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
# import cv2
import os
import base64
from pathlib import Path
from core.chessboard_detector import ChessboardDetector
detector = ChessboardDetector(
pose_model_path="onnx/pose/4_v6-0301.onnx",
full_classifier_model_path="onnx/layout_recognition/nano_v3-0319.onnx"
)
# 数据集路径
dict_cate_names = {
'.': '.',
'x': 'x',
'红帅': 'K',
'红士': 'A',
'红相': 'B',
'红马': 'N',
'红车': 'R',
'红炮': 'C',
'红兵': 'P',
'黑将': 'k',
'黑仕': 'a',
'黑象': 'b',
'黑傌': 'n',
'黑車': 'r',
'黑砲': 'c',
'黑卒': 'p',
}
# 数据集路径
dict_cate_images = {
'K': 'red_K.png',
'A': 'red_A.png',
'B': 'red_B.png',
'N': 'red_N.png',
'R': 'red_R.png',
'C': 'red_C.png',
'P': 'red_P.png',
'k': 'black_k.png',
'a': 'black_a.png',
'b': 'black_b.png',
'n': 'black_n.png',
'r': 'black_r.png',
'c': 'black_c.png',
'p': 'black_p.png',
}
dict_cate_names_reverse = {v: k for k, v in dict_cate_names.items()}
# 缓存图片的 base64 编码
image_base64_cache = {}
def get_image_base64(img_path):
if img_path in image_base64_cache:
return image_base64_cache[img_path]
try:
img_full_path = Path("resources") / img_path
if not img_full_path.exists():
return ""
with open(img_full_path, "rb") as img_file:
encoded = base64.b64encode(img_file.read()).decode('utf-8')
data_url = f"data:image/png;base64,{encoded}"
image_base64_cache[img_path] = data_url
return data_url
except Exception as e:
print(f"Error loading image {img_path}: {e}")
return
### 构建 examples
def build_examples():
examples = []
# 读取 examples 目录下的所有图片
for file in os.listdir("examples"):
if file.endswith(".jpg") or file.endswith(".png"):
image_path = os.path.join("examples", file)
examples.append([image_path])
return examples
full_examples = build_examples()
with gr.Blocks(css="""
.image img {
max-height: 512px;
}
"""
) as demo:
gr.Markdown("""
## 棋盘检测, 棋子识别
features: 轻量化模型
x 表示 有遮挡位置
. 表示 棋盘上的普通交叉点
步骤:
1. 流程分成两步,第一步 keypoints 检测
2. 拉伸棋盘,并预测棋子
log:
1. 优化棋子识别,增加对游戏棋盘的识别
"""
)
with gr.Row():
with gr.Column():
image_input = gr.Image(label="上传棋盘图片", type="numpy", elem_classes="image")
with gr.Column():
original_image_with_keypoints = gr.Image(
label="step1: 原图带关键点",
interactive=False,
visible=True,
elem_classes="image"
)
with gr.Row():
with gr.Column():
transformed_image = gr.Image(
label="step2: 拉伸棋盘",
interactive=False,
visible=True,
elem_classes="image"
)
with gr.Column():
use_time = gr.Textbox(
label="用时",
interactive=False,
visible=True,
)
# 添加 手风琴
with gr.Accordion("文字识别", open=False):
layout_pred_info = gr.Dataframe(
label="棋子识别",
interactive=False,
visible=True,
)
with gr.Accordion("棋子识别", open=True):
# 10 行 9 列的表格
table_html = gr.HTML(
"""
<table>
</table>
"""
)
with gr.Row():
with gr.Column():
gr.Examples(
full_examples[:10], inputs=[image_input], label="示例图片1", examples_per_page=10,)
gr.Examples(
full_examples[10:20], inputs=[image_input], label="示例图片2", examples_per_page=10,)
gr.Examples(
full_examples[20:], inputs=[image_input], label="示例图片3", examples_per_page=10,)
def gen_table_html(annotation_arr_10_9):
# 生成表格 HTML
html = "<table border='1' style='margin: auto;'>"
for row in annotation_arr_10_9:
html += "<tr>"
for cell in row:
if cell == '.':
# 普通交叉点
html += "<td style='width: 60px; height: 60px; text-align: center;'></td>"
elif cell == 'x':
# 遮挡位置
html += "<td style='width: 60px; height: 60px; text-align: center;'>x</td>"
else:
# 获取对应的图片文件名
img_file = dict_cate_images.get(cell, '')
img_data_base64 = get_image_base64(img_file)
# 生成图片标签
html += f"<td style='width: 60px; height: 60px; text-align: center; padding: 0;'><img src='{img_data_base64}' width='58' height='58'></td>"
html += "</tr>"
html += "</table>"
return html
def detect_chessboard(image):
if image is None:
return None, None, None, None, None
try:
original_image_with_keypoints, transformed_image, cells_labels_str, scores, time_info = detector.pred_detect_board_and_classifier(image)
# 将 cells_labels 转换为 DataFrame
# cells_labels 通过 \n 分割
annotation_10_rows = [item for item in cells_labels_str.split("\n")]
# 将 annotation_10_rows 转换成为 10 行 9 列的二维数组
annotation_arr_10_9_short = [list(item) for item in annotation_10_rows]
# 将 棋子类别 转换为 中文
annotation_arr_10_9 = [[dict_cate_names_reverse[item] for item in row] for row in annotation_arr_10_9_short]
except Exception as e:
gr.Warning(f"检测失败 图片或者视频布局错误")
return None, None, None, None, None
table_html = gen_table_html(annotation_arr_10_9_short)
return original_image_with_keypoints, transformed_image, annotation_arr_10_9, table_html, time_info
image_input.change(fn=detect_chessboard,
inputs=[image_input],
outputs=[original_image_with_keypoints, transformed_image, layout_pred_info, table_html, use_time])
if __name__ == "__main__":
demo.launch()
|