File size: 4,572 Bytes
37170d6
 
 
 
 
 
 
 
 
085b115
37170d6
 
ec71a6c
37170d6
 
 
 
 
 
 
 
ec71a6c
 
 
37170d6
 
 
 
 
 
 
ec71a6c
37170d6
 
 
ec71a6c
 
 
 
 
 
37170d6
 
 
 
ec71a6c
37170d6
 
 
 
 
 
 
ec71a6c
37170d6
 
ec71a6c
37170d6
 
 
 
 
 
 
 
ec71a6c
37170d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec71a6c
37170d6
 
 
ec71a6c
 
37170d6
ec71a6c
37170d6
ec71a6c
 
 
 
37170d6
ec71a6c
 
 
 
37170d6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

import time
import numpy as np
import cv2
from typing import List, Tuple, Union
from pandas import DataFrame
from .runonnx.rtmpose import RTMPOSE_ONNX
from .runonnx.full_classifier import FULL_CLASSIFIER_ONNX

from core.helper_4_kpt import extract_chessboard

class ChessboardDetector:
    def __init__(self,
                 pose_model_path: str,
                 full_classifier_model_path: str = None
                 ):

        self.pose = RTMPOSE_ONNX(
            model_path=pose_model_path,
        )

        self.full_classifier = FULL_CLASSIFIER_ONNX(
            model_path=full_classifier_model_path,
        )

        self.board_positions = []  # 存储棋盘位置坐标
        self.current_image = None
        self.current_filename = None
    

    # 检测中国象棋棋盘
    def pred_keypoints(self, image_bgr: Union[np.ndarray, None] = None) -> Tuple[List[List[int]], List[float]]:

        # 预测关键点, 绘制关键点

        width, height = image_bgr.shape[:2]
        bbox = [0, 0, width, height]

        keypoints, scores = self.pose.pred(image=image_bgr, bbox=bbox)

        return keypoints, scores
    

    def draw_pred_with_keypoints(self, image_rgb: Union[np.ndarray, None] = None) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
        if image_rgb is None:
            return None, None, None
        
        image_rgb = image_rgb.copy()

        original_image = image_rgb.copy()

        image_bgr = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)

        keypoints, scores = self.pred_keypoints(image_bgr)

        # 绘制棋盘框架
        draw_image = self.pose.draw_pred(img=image_rgb, keypoints=keypoints, scores=scores)

        # 融合 self.pose.bone_names 与 keypoints, 再转换成 DataFrame
        keypoint_list = []
        for bone_name, keypoint in zip(self.pose.bone_names, keypoints):
            keypoint_list.append({"name": bone_name, "x": keypoint[0], "y": keypoint[1]})

        keypoint_df = DataFrame(keypoint_list)

        return draw_image, original_image, keypoint_df

    # 拉伸棋盘 detect board, 然后预测
    def extract_chessboard_and_classifier_layout(self, 
                                                image_rgb: Union[np.ndarray, None] = None, 
                                                keypoints: Union[np.ndarray, None] = None
                                                ) -> Tuple[np.ndarray, List[List[str]], List[List[float]]]:
        
        # 提取棋盘, 绘制 每个位置的 范围信息
        transformed_image, _transformed_keypoints, _corner_points = extract_chessboard(img=image_rgb, keypoints=keypoints)

        transformed_image_copy = transformed_image.copy()
   
        # 预测每个位置的 棋子类别
        _, _, scores, pred_result = self.full_classifier.pred(transformed_image_copy, is_rgb=True)


        return transformed_image, pred_result, scores


    # 检测棋盘 detect board
    def pred_detect_board_and_classifier(self, 
                                         image_rgb: Union[np.ndarray, None] = None, 
                                        ) -> Tuple[np.ndarray, np.ndarray, str, List[List[float]], str]:

        """
        @param image_rgb: 输入的 RGB 图像
        @return: 
            - transformed_image_layout  # 拉伸棋盘
            - original_image_with_keypoints  # 原图关键点
            - layout_pred_info  # 每个位置的 棋子类别
            - scores  # 每个位置的 置信度
            - time_info  # 推理用时
        """

        if image_rgb is None:
            return None, None, [], [], ""
        
        image_rgb_for_extract = image_rgb.copy()
        image_rgb_for_draw = image_rgb.copy()
        
        start_time = time.time()

        try:
            image_bgr = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)

            keypoints, scores = self.pred_keypoints(image_bgr)

            """
            绘制 原图关键点
            """
            original_image_with_keypoints = self.pose.draw_pred(img=image_rgb_for_draw, keypoints=keypoints, scores=scores)

            transformed_image, cells_labels, scores = self.extract_chessboard_and_classifier_layout(image_rgb=image_rgb_for_extract, keypoints=keypoints)
        except Exception as e:
            print("检测棋盘失败", e)
            return None, None, None, None, ""


        use_time = time.time() - start_time

        time_info = f"推理用时: {use_time:.2f}s"

        return original_image_with_keypoints, transformed_image, cells_labels, scores, time_info