paddle-ocr-demo / app.py
yolo12138's picture
requirements
0a8537f
raw
history blame
2.43 kB
from paddleocr import PaddleOCR
import json
from PIL import Image
import gradio as gr
import numpy as np
import cv2
# 获取随机的颜色
def get_random_color():
c = tuple(np.random.randint(0, 256, 3).tolist())
return c
# 绘制ocr识别结果
def draw_ocr_bbox(image, boxes, colors):
print(colors)
box_num = len(boxes)
for i in range(box_num):
box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, colors[i], 2)
return image
# torch.hub.download_url_to_file('https://i.imgur.com/aqMBT0i.jpg', 'example.jpg')
def inference(img: Image.Image, lang, confidence):
ocr = PaddleOCR(use_angle_cls=True, lang=lang, use_gpu=False)
# img_path = img.name
img2np = np.array(img)
result = ocr.ocr(img2np, cls=True)[0]
# rgb
image = img.convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
# 识别结果
final_result = [dict(boxes=box, txt=txt, score=score, _c=get_random_color()) for box, txt, score in zip(boxes, txts, scores)]
# 过滤 score < 0.5 的
final_result = [item for item in final_result if item['score'] > confidence]
im_show = draw_ocr_bbox(image, [item['boxes'] for item in final_result], [item['_c'] for item in final_result])
im_show = Image.fromarray(im_show)
data = [[json.dumps(item['boxes']), round(item['score'], 3), item['txt']] for item in final_result]
return im_show, data
title = 'PaddleOCR'
description = 'Gradio demo for PaddleOCR.'
examples = [
['example_imgs/example.jpg','en', 0.5],
['example_imgs/ch.jpg','ch', 0.7],
['example_imgs/img_12.jpg','en', 0.7],
]
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
if __name__ == '__main__':
demo = gr.Interface(
inference,
[gr.Image(type='pil', label='Input'),
gr.Dropdown(choices=['ch', 'en', 'fr', 'german', 'korean', 'japan'], value='ch', label='language'),
gr.Slider(0.1, 1, 0.5, step=0.1, label='confidence_threshold')
],
# 输出
[gr.Image(type='pil', label='Output'), gr.Dataframe(headers=[ 'bbox', 'score', 'text'], label='Result')],
title=title,
description=description,
examples=examples,
css=css,
)
demo.queue(max_size=10)
demo.launch()