from paddleocr import PaddleOCR
import json
from PIL import Image
import gradio as gr
import numpy as np
import cv2

# 获取随机的颜色
def get_random_color():
    c = tuple(np.random.randint(0, 256, 3).tolist())
    return c

# 绘制ocr识别结果
def draw_ocr_bbox(image, boxes, colors):
    print(colors)
    box_num = len(boxes)
    for i in range(box_num):
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, colors[i], 2)
    return image

# torch.hub.download_url_to_file('https://i.imgur.com/aqMBT0i.jpg', 'example.jpg')

def inference(img: Image.Image, lang, confidence):
    ocr = PaddleOCR(use_angle_cls=True, lang=lang, use_gpu=False,
                    det_model_dir=f'./models/det/{lang}',
                    cls_model_dir=f'./models/cls/{lang}',
                    rec_model_dir=f'./models/rec/{lang}')
    # img_path = img.name
    img2np = np.array(img)
    result = ocr.ocr(img2np, cls=True)[0]
    # rgb
    image = img.convert('RGB')
    boxes = [line[0] for line in result]
    txts = [line[1][0] for line in result]
    scores = [line[1][1] for line in result]
    
    # 识别结果
    final_result = [dict(boxes=box, txt=txt, score=score, _c=get_random_color()) for box, txt, score in zip(boxes, txts, scores)]
    # 过滤 score < 0.5 的
    final_result = [item for item in final_result if item['score'] > confidence]

    im_show = draw_ocr_bbox(image, [item['boxes'] for item in final_result], [item['_c'] for item in final_result])
    im_show = Image.fromarray(im_show)
    data = [[json.dumps(item['boxes']), round(item['score'], 3), item['txt']] for item in final_result]
    return im_show, data

title = 'PaddleOCR'
description = 'Gradio demo for PaddleOCR.'

examples = [
    ['example_imgs/example.jpg','en', 0.5],
    ['example_imgs/ch.jpg','ch', 0.7],
    ['example_imgs/demo003.jpeg','en', 0.7],
]

css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"

if __name__ == '__main__':
    demo = gr.Interface(
        inference,
        [gr.Image(type='pil', label='Input'),
        gr.Dropdown(choices=['ch', 'en', 'fr', 'german', 'korean', 'japan'], value='ch', label='language'),
        gr.Slider(0.1, 1, 0.5, step=0.1, label='confidence_threshold')
        ],
        # 输出
        [gr.Image(type='pil', label='Output'), gr.Dataframe(headers=[ 'bbox', 'score', 'text'], label='Result')],
        title=title,
        description=description,
        examples=examples,
        css=css,
        cache_examples=True  # 添加缓存选项
    )
    demo.queue(max_size=10)
    demo.launch()