yonigozlan's picture
yonigozlan HF staff
enable kernel
40a6300
import os
import time
import gradio as gr
import numpy as np
import requests
import spaces
import supervision as sv
import torch
from PIL import Image
from tqdm import tqdm
from transformers import AutoModelForObjectDetection, AutoProcessor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
model = AutoModelForObjectDetection.from_pretrained(
"PekingU/rtdetr_r50vd_coco_o365",
disable_custom_kernels=False,
torch_dtype=torch.float16,
).to(device)
model_compiled = torch.compile(
model,
mode="reduce-overhead",
)
@spaces.GPU
def init_compiled_model():
print("Compiling model...")
start_time = time.time()
with torch.no_grad():
for _ in range(10):
outputs = model_compiled(**inputs)
_ = outputs[0].cpu()
print(f"Model compiled in {time.time() - start_time:.2f} seconds.")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt").to(device).to(torch.float16)
init_compiled_model()
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
TRACKER = sv.ByteTrack()
def calculate_end_frame_index(source_video_path):
video_info = sv.VideoInfo.from_video_path(source_video_path)
return min(video_info.total_frames, video_info.fps * 5)
def annotate_image(input_image, detections, labels) -> np.ndarray:
output_image = MASK_ANNOTATOR.annotate(input_image, detections)
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
return output_image
@spaces.GPU
def process_video(
input_video,
confidence_threshold,
progress=gr.Progress(track_tqdm=True),
):
video_info = sv.VideoInfo.from_video_path(input_video)
total = calculate_end_frame_index(input_video)
frame_generator = sv.get_video_frames_generator(source_path=input_video, end=total)
result_file_name = "output.mp4"
result_file_path = os.path.join(os.getcwd(), result_file_name)
all_fps = []
with sv.VideoSink(result_file_path, video_info=video_info) as sink:
for _ in tqdm(range(total), desc="Processing video.."):
try:
frame = next(frame_generator)
except StopIteration:
break
results, fps = query(frame, confidence_threshold)
all_fps.append(fps)
final_labels = []
detections = []
detections = sv.Detections.from_transformers(results[0])
detections = TRACKER.update_with_detections(detections)
for label in detections.class_id.tolist():
final_labels.append(model.config.id2label[label])
frame = annotate_image(
input_image=frame,
detections=detections,
labels=final_labels,
)
sink.write_frame(frame)
avg_fps = np.mean(all_fps)
return result_file_path, gr.Markdown(
f'<h3 style="text-align: center;">Model inference FPS: {avg_fps:.2f}</h3>',
visible=True,
)
def query(frame, confidence_threshold):
image = Image.fromarray(frame)
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
with torch.no_grad():
start = time.time()
outputs = model_compiled(**inputs)
outputs[0].cpu()
fps = 1 / (time.time() - start)
target_sizes = torch.tensor([frame.shape[:2]]).to(device)
results = processor.post_process_object_detection(
outputs=outputs,
threshold=confidence_threshold,
target_sizes=target_sizes,
)
return results, fps
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("## Real Time Object Detection with compiled RT-DETR")
gr.Markdown(
"""
This is a demo for real-time object detection using RT-DETR compiled.<br>
It runs on ZeroGPU which captures GPU every first time you infer.<br>
This combined with video processing time means that the demo inference time is slower than the model's actual inference time.<br>
The actual model average inference FPS is displayed under the processed video after inference.
"""
)
gr.Markdown(
"Simply upload a video! You can also play with confidence threshold or try the examples below. πŸ‘‡"
)
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video")
with gr.Column():
output_video = gr.Video(label="Output Video (5s max)")
actual_fps = gr.Markdown("", visible=False)
with gr.Row():
conf = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
value=0.3,
step=0.05,
)
with gr.Row():
submit = gr.Button(variant="primary")
example = gr.Examples(
examples=[
["./football.mp4", 0.3, 640],
["./cat.mp4", 0.3, 640],
["./safari2.mp4", 0.3, 640],
],
inputs=[input_video, conf],
outputs=output_video,
)
submit.click(
fn=process_video,
inputs=[input_video, conf],
outputs=[output_video, actual_fps],
)
if __name__ == "__main__":
demo.launch(show_error=True)