File size: 4,664 Bytes
c3d8ec8
 
48af2fc
c3d8ec8
48af2fc
 
 
 
 
 
c3d8ec8
 
 
 
 
 
48af2fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
title: Average Precision Score
emoji: 🌍
colorFrom: blue
colorTo: orange
tags:
- evaluate
- metric
- sklearn
description: "Average precision score."
sdk: gradio
sdk_version: 3.18.0
app_file: app.py
pinned: false
---

# Metric Card for `sklearn.metrics.average_precision_score`

## Input Convention
To be consistent with the `evaluate` input conventions the scikit-learn inputs are renamed:
- `y_true`: `references`
- `y_pred`: `prediction_scores`

## Usage

```python
import evaluate

metric = evaluate.load("yonting/average_precision_score")
results = metric.compute(references=references, prediction_scores=prediction_scores)
```

## Description

Average precision score.

    Compute average precision (AP) from prediction scores.
    AP summarizes a precision-recall curve as the weighted mean of precisions
    achieved at each threshold, with the increase in recall from the previous
    threshold used as the weight:
    .. math::
        \\text{AP} = \\sum_n (R_n - R_{n-1}) P_n
    where :math:`P_n` and :math:`R_n` are the precision and recall at the nth
    threshold [1]_. This implementation is not interpolated and is different
    from computing the area under the precision-recall curve with the
    trapezoidal rule, which uses linear interpolation and can be too
    optimistic.
    Note: this implementation is restricted to the binary classification task
    or multilabel classification task.
    Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.
    Parameters
    ----------
    y_true : ndarray of shape (n_samples,) or (n_samples, n_classes)
        True binary labels or binary label indicators.
    y_score : ndarray of shape (n_samples,) or (n_samples, n_classes)
        Target scores, can either be probability estimates of the positive
        class, confidence values, or non-thresholded measure of decisions
        (as returned by :term:`decision_function` on some classifiers).
    average : {'micro', 'samples', 'weighted', 'macro'} or None, \
            default='macro'
        If ``None``, the scores for each class are returned. Otherwise,
        this determines the type of averaging performed on the data:
        ``'micro'``:
            Calculate metrics globally by considering each element of the label
            indicator matrix as a label.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label).
        ``'samples'``:
            Calculate metrics for each instance, and find their average.
        Will be ignored when ``y_true`` is binary.
    pos_label : int or str, default=1
        The label of the positive class. Only applied to binary ``y_true``.
        For multilabel-indicator ``y_true``, ``pos_label`` is fixed to 1.
    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.
    Returns
    -------
    average_precision : float
        Average precision score.
    See Also
    --------
    roc_auc_score : Compute the area under the ROC curve.
    precision_recall_curve : Compute precision-recall pairs for different
        probability thresholds.
    Notes
    -----
    .. versionchanged:: 0.19
      Instead of linearly interpolating between operating points, precisions
      are weighted by the change in recall since the last operating point.
    References
    ----------
    .. [1] `Wikipedia entry for the Average precision
           <https://en.wikipedia.org/w/index.php?title=Information_retrieval&
           oldid=793358396#Average_precision>`_
    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import average_precision_score
    >>> y_true = np.array([0, 0, 1, 1])
    >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
    >>> average_precision_score(y_true, y_scores)
    0.83...



## Citation
```bibtex
@article{scikit-learn,
 title={Scikit-learn: Machine Learning in {P}ython},
 author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
         and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
         and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
         Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
 journal={Journal of Machine Learning Research},
 volume={12},
 pages={2825--2830},
 year={2011}
}
```
## Further References
- Docs: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html