Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,202 +2,181 @@ import os
|
|
2 |
import traceback
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
-
import inspect
|
6 |
import pandas as pd
|
7 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, PythonInterpreterTool, HfApiModel, LiteLLMModel, WikipediaSearchTool
|
8 |
from huggingface_hub import login
|
9 |
import time
|
10 |
|
11 |
-
# (Keep Constants as is)
|
12 |
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
-
#HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
-
#login(HF_TOKEN)
|
16 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
17 |
-
#login(HF_TOKEN)
|
|
|
18 |
model = LiteLLMModel(model_id="deepseek/deepseek-chat",
|
19 |
api_key=os.getenv("DEEPSEEK_API_KEY"),
|
20 |
base_url="https://api.deepseek.com")
|
21 |
|
22 |
# --- Basic Agent Definition ---
|
23 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
24 |
class BasicAgent:
|
25 |
def __init__(self):
|
26 |
-
print("BasicAgent initialized.")
|
27 |
-
# Set up model
|
28 |
self.model = model
|
29 |
-
|
30 |
-
# Initialize custom tools
|
31 |
self.tools = [
|
32 |
PythonInterpreterTool(),
|
33 |
DuckDuckGoSearchTool(),
|
34 |
WikipediaSearchTool(),
|
35 |
]
|
36 |
-
|
37 |
-
# Create agent
|
38 |
self.agent = CodeAgent(
|
39 |
model=self.model,
|
40 |
tools=self.tools,
|
41 |
add_base_tools=True
|
42 |
)
|
43 |
-
|
44 |
-
def answer_question(self, question: str) -> str:
|
45 |
-
"""Process a question and return the answer"""
|
46 |
-
print(f"Processing question: {question[:50]}..." if len(question) > 50 else question)
|
47 |
|
|
|
|
|
48 |
try:
|
49 |
result = self.agent.run(question)
|
50 |
-
# Ensure result is always a string
|
51 |
if not isinstance(result, str):
|
52 |
result = str(result)
|
53 |
-
# 提取最终答案 - 如果结果包含"Final answer:"格式
|
54 |
if "Final answer:" in result:
|
55 |
-
|
56 |
-
final_answer_part = result.split("Final answer:")[1].strip()
|
57 |
return final_answer_part
|
58 |
return result
|
59 |
-
except Exception as e:
|
60 |
-
print(traceback.format_exc())
|
61 |
-
|
62 |
-
return f"I encountered an issue while processing your question: {str(e)}"
|
63 |
|
64 |
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
submission_completed = False
|
69 |
-
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
70 |
-
"""
|
71 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
72 |
-
and displays the results.
|
73 |
-
"""
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
# 如果已经完成提交,直接返回之前的结果
|
78 |
-
if submission_completed and processed_questions:
|
79 |
-
results_log = []
|
80 |
-
for task_id, data in processed_questions.items():
|
81 |
-
results_log.append({"Task ID": task_id, "Question": data["question"], "Submitted Answer": data["answer"]})
|
82 |
-
return "已经完成提交,请刷新页面重新开始。", pd.DataFrame(results_log)
|
83 |
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
if profile:
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
|
94 |
api_url = DEFAULT_API_URL
|
95 |
questions_url = f"{api_url}/questions"
|
96 |
submit_url = f"{api_url}/submit"
|
|
|
|
|
97 |
|
98 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
99 |
try:
|
100 |
agent = BasicAgent()
|
101 |
except Exception as e:
|
102 |
-
print(f"Error instantiating agent: {e}")
|
103 |
-
return f"
|
104 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
105 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
106 |
-
print(agent_code)
|
107 |
|
108 |
-
#
|
109 |
-
# print(f"Fetching questions from: {questions_url}")
|
110 |
try:
|
111 |
-
response = requests.get(questions_url, timeout=
|
112 |
response.raise_for_status()
|
113 |
questions_data = response.json()
|
114 |
if not questions_data:
|
115 |
-
|
116 |
-
|
117 |
-
# print(f"Fetched {len(questions_data)} questions.")
|
118 |
except requests.exceptions.RequestException as e:
|
119 |
-
print(f"Error fetching questions: {e}")
|
120 |
-
return f"
|
121 |
except requests.exceptions.JSONDecodeError as e:
|
122 |
-
|
123 |
-
|
124 |
-
return f"Error decoding server response for questions: {e}", None
|
125 |
-
except Exception as e:
|
126 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
127 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
128 |
|
129 |
-
# 3. Run your Agent
|
130 |
results_log = []
|
131 |
answers_payload = []
|
132 |
-
|
133 |
-
|
|
|
|
|
134 |
task_id = item.get("task_id")
|
135 |
question_text = item.get("question")
|
|
|
136 |
if not task_id or question_text is None:
|
137 |
-
|
138 |
continue
|
|
|
|
|
|
|
139 |
try:
|
140 |
submitted_answer = agent.answer_question(question_text)
|
|
|
141 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
142 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
143 |
except Exception as e:
|
144 |
-
|
145 |
-
|
|
|
|
|
146 |
|
147 |
-
|
|
|
|
|
148 |
|
149 |
if not answers_payload:
|
150 |
-
|
151 |
-
return "Agent
|
152 |
|
153 |
-
#
|
154 |
-
submission_data = {"username": username
|
155 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
156 |
-
# print(status_update)
|
157 |
|
158 |
-
|
159 |
-
# print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
160 |
try:
|
161 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
162 |
response.raise_for_status()
|
163 |
result_data = response.json()
|
164 |
final_status = (
|
165 |
-
f"
|
166 |
-
f"
|
167 |
-
f"
|
168 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')}
|
169 |
-
f"
|
170 |
)
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
173 |
results_df = pd.DataFrame(results_log)
|
174 |
return final_status, results_df
|
175 |
except requests.exceptions.HTTPError as e:
|
176 |
-
error_detail = f"
|
177 |
try:
|
178 |
error_json = e.response.json()
|
179 |
-
error_detail += f"
|
180 |
except requests.exceptions.JSONDecodeError:
|
181 |
-
error_detail += f"
|
182 |
-
status_message = f"
|
183 |
-
# print(status_message)
|
184 |
-
results_df = pd.DataFrame(results_log)
|
185 |
-
return status_message, results_df
|
186 |
except requests.exceptions.Timeout:
|
187 |
-
status_message = "
|
188 |
-
# print(status_message)
|
189 |
-
results_df = pd.DataFrame(results_log)
|
190 |
-
return status_message, results_df
|
191 |
except requests.exceptions.RequestException as e:
|
192 |
-
status_message = f"
|
193 |
-
# print(status_message)
|
194 |
-
results_df = pd.DataFrame(results_log)
|
195 |
-
return status_message, results_df
|
196 |
except Exception as e:
|
197 |
-
status_message = f"
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
201 |
|
202 |
|
203 |
# --- Build Gradio Interface using Blocks ---
|
@@ -206,51 +185,29 @@ with gr.Blocks() as demo:
|
|
206 |
gr.Markdown(
|
207 |
"""
|
208 |
**Instructions:**
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
213 |
-
|
214 |
---
|
215 |
**Disclaimers:**
|
216 |
-
|
217 |
-
|
|
|
218 |
"""
|
219 |
)
|
220 |
|
221 |
gr.LoginButton()
|
222 |
-
|
223 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
224 |
-
|
225 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
226 |
-
# Removed max_rows=10 from DataFrame constructor
|
227 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
228 |
|
229 |
run_button.click(
|
230 |
fn=run_and_submit_all,
|
231 |
-
outputs=[status_output, results_table]
|
232 |
)
|
233 |
|
234 |
if __name__ == "__main__":
|
235 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
236 |
-
#
|
237 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
238 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
239 |
-
|
240 |
-
if space_host_startup:
|
241 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
242 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
243 |
-
else:
|
244 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
245 |
-
|
246 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
247 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
248 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
249 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
250 |
-
else:
|
251 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
252 |
-
|
253 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
254 |
-
|
255 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
256 |
-
demo.launch(debug=
|
|
|
2 |
import traceback
|
3 |
import gradio as gr
|
4 |
import requests
|
|
|
5 |
import pandas as pd
|
6 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, PythonInterpreterTool, HfApiModel, LiteLLMModel, WikipediaSearchTool
|
7 |
from huggingface_hub import login
|
8 |
import time
|
9 |
|
|
|
10 |
# --- Constants ---
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
+
# login(HF_TOKEN) # Recommended via Space secrets
|
14 |
+
|
15 |
model = LiteLLMModel(model_id="deepseek/deepseek-chat",
|
16 |
api_key=os.getenv("DEEPSEEK_API_KEY"),
|
17 |
base_url="https://api.deepseek.com")
|
18 |
|
19 |
# --- Basic Agent Definition ---
|
|
|
20 |
class BasicAgent:
|
21 |
def __init__(self):
|
22 |
+
# print("BasicAgent initialized.") # Removed
|
|
|
23 |
self.model = model
|
|
|
|
|
24 |
self.tools = [
|
25 |
PythonInterpreterTool(),
|
26 |
DuckDuckGoSearchTool(),
|
27 |
WikipediaSearchTool(),
|
28 |
]
|
|
|
|
|
29 |
self.agent = CodeAgent(
|
30 |
model=self.model,
|
31 |
tools=self.tools,
|
32 |
add_base_tools=True
|
33 |
)
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
def answer_question(self, question: str) -> str:
|
36 |
+
# print(f"Processing question (first 50 chars): {question[:50]}...") # Removed
|
37 |
try:
|
38 |
result = self.agent.run(question)
|
|
|
39 |
if not isinstance(result, str):
|
40 |
result = str(result)
|
|
|
41 |
if "Final answer:" in result:
|
42 |
+
final_answer_part = result.split("Final answer:", 1)[1].strip()
|
|
|
43 |
return final_answer_part
|
44 |
return result
|
45 |
+
except Exception as e: # Capture exception object
|
46 |
+
print(f"Error in agent.run for question '{question[:50]}...':\n{traceback.format_exc()}")
|
47 |
+
return f"I encountered an issue processing your question: {str(e)}"
|
|
|
48 |
|
49 |
|
50 |
+
# Global variables
|
51 |
+
processed_questions_cache = {}
|
52 |
+
submission_has_been_completed = False
|
53 |
|
54 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
55 |
+
global processed_questions_cache, submission_has_been_completed
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# print(f"--- run_and_submit_all triggered. Submission completed: {submission_has_been_completed} ---") # Removed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
if submission_has_been_completed and processed_questions_cache:
|
60 |
+
# print("--- Submission previously completed. Displaying cached results. ---") # Removed
|
61 |
+
results_log_display = []
|
62 |
+
for task_id, data in processed_questions_cache.items():
|
63 |
+
results_log_display.append({"Task ID": task_id, "Question": data["question"], "Submitted Answer": data["answer"]})
|
64 |
+
return "评估已完成并提交。如果需要重新运行,请刷新页面。", pd.DataFrame(results_log_display if results_log_display else [{}])
|
65 |
|
66 |
+
if not profile:
|
67 |
+
# print("--- User not logged in. ---") # Removed
|
68 |
+
return "请先使用 Hugging Face 账号登录。", None
|
69 |
+
|
70 |
+
username = profile.username
|
71 |
+
print(f"--- User: {username}. Starting new submission process. ---") # Kept for context
|
72 |
|
73 |
api_url = DEFAULT_API_URL
|
74 |
questions_url = f"{api_url}/questions"
|
75 |
submit_url = f"{api_url}/submit"
|
76 |
+
space_id = os.getenv("SPACE_ID")
|
77 |
+
agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "N/A (SPACE_ID not set)"
|
78 |
|
|
|
79 |
try:
|
80 |
agent = BasicAgent()
|
81 |
except Exception as e:
|
82 |
+
print(f"Fatal: Error instantiating agent: {e}\n{traceback.format_exc()}")
|
83 |
+
return f"初始化 Agent 失败: {e}", None
|
|
|
|
|
|
|
84 |
|
85 |
+
# 1. Fetch Questions
|
86 |
+
# print(f"Fetching questions from: {questions_url}") # Removed
|
87 |
try:
|
88 |
+
response = requests.get(questions_url, timeout=20)
|
89 |
response.raise_for_status()
|
90 |
questions_data = response.json()
|
91 |
if not questions_data:
|
92 |
+
print("Warning: Fetched questions list is empty.")
|
93 |
+
return "获取到的问题列表为空。", None
|
94 |
+
# print(f"Fetched {len(questions_data)} questions.") # Removed
|
95 |
except requests.exceptions.RequestException as e:
|
96 |
+
print(f"Fatal: Error fetching questions: {e}\n{traceback.format_exc()}")
|
97 |
+
return f"获取问题失败: {e}", None
|
98 |
except requests.exceptions.JSONDecodeError as e:
|
99 |
+
print(f"Fatal: Error decoding JSON from questions: {e}\nResponse text: {response.text[:500]}")
|
100 |
+
return f"解析问题数据失败: {e}", None
|
|
|
|
|
|
|
|
|
101 |
|
|
|
102 |
results_log = []
|
103 |
answers_payload = []
|
104 |
+
|
105 |
+
# 2. Run Agent on Questions
|
106 |
+
print(f"--- Running agent on {len(questions_data)} questions... ---")
|
107 |
+
for i, item in enumerate(questions_data):
|
108 |
task_id = item.get("task_id")
|
109 |
question_text = item.get("question")
|
110 |
+
|
111 |
if not task_id or question_text is None:
|
112 |
+
print(f"Warning: Skipping item with missing task_id or question: {item}")
|
113 |
continue
|
114 |
+
|
115 |
+
print(f"--- Processing question {i+1}/{len(questions_data)} (ID: {task_id}): \"{question_text[:70]}...\" ---")
|
116 |
+
submitted_answer = "AGENT_ERROR: Did not run or failed" # Default in case of early exit
|
117 |
try:
|
118 |
submitted_answer = agent.answer_question(question_text)
|
119 |
+
print(f"--- Answer for Q{i+1} (ID: {task_id}): \"{submitted_answer[:70]}...\" ---") # Print the answer
|
120 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
121 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
122 |
except Exception as e:
|
123 |
+
# This specific exception handling might be redundant if agent.answer_question handles its own exceptions and returns a string
|
124 |
+
# However, keeping it as a fallback.
|
125 |
+
print(f"Error running agent on task {task_id} (Question: \"{question_text[:50]}...\"):\n{traceback.format_exc()}")
|
126 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT_ERROR: {e}"})
|
127 |
|
128 |
+
# CRITICAL: This sleep is likely causing timeouts.
|
129 |
+
# print(f"--- Waiting before next question... ---") # Removed
|
130 |
+
time.sleep(1) # MINIMAL SLEEP - ADJUST OR REMOVE FOR TESTING / BASED ON API LIMITS
|
131 |
|
132 |
if not answers_payload:
|
133 |
+
print("Warning: Agent did not produce any answers to submit.")
|
134 |
+
return "Agent 未能生成任何答案用于提交。", pd.DataFrame(results_log)
|
135 |
|
136 |
+
# 3. Prepare and Submit
|
137 |
+
submission_data = {"username": username, "agent_code": agent_code_url, "answers": answers_payload}
|
138 |
+
# status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." # Removed
|
139 |
+
# print(status_update) # Removed
|
140 |
|
141 |
+
print(f"--- Submitting {len(answers_payload)} answers for user '{username}'... ---")
|
|
|
142 |
try:
|
143 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
144 |
response.raise_for_status()
|
145 |
result_data = response.json()
|
146 |
final_status = (
|
147 |
+
f"提交成功!\n"
|
148 |
+
f"用户: {result_data.get('username')}\n"
|
149 |
+
f"总分: {result_data.get('score', 'N/A')}% "
|
150 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} 正确)\n"
|
151 |
+
f"消息: {result_data.get('message', '无消息.')}"
|
152 |
)
|
153 |
+
print(f"--- Submission successful for {username}! Score: {result_data.get('score', 'N/A')}% ---")
|
154 |
+
submission_has_been_completed = True
|
155 |
+
for item_log in results_log:
|
156 |
+
processed_questions_cache[item_log["Task ID"]] = {
|
157 |
+
"question": item_log["Question"],
|
158 |
+
"answer": item_log["Submitted Answer"]
|
159 |
+
}
|
160 |
results_df = pd.DataFrame(results_log)
|
161 |
return final_status, results_df
|
162 |
except requests.exceptions.HTTPError as e:
|
163 |
+
error_detail = f"服务器响应状态 {e.response.status_code}."
|
164 |
try:
|
165 |
error_json = e.response.json()
|
166 |
+
error_detail += f" 详情: {error_json.get('detail', e.response.text)}"
|
167 |
except requests.exceptions.JSONDecodeError:
|
168 |
+
error_detail += f" 响应内容: {e.response.text[:500]}"
|
169 |
+
status_message = f"提交失败: {error_detail}"
|
|
|
|
|
|
|
170 |
except requests.exceptions.Timeout:
|
171 |
+
status_message = "提交失败: 请求超时."
|
|
|
|
|
|
|
172 |
except requests.exceptions.RequestException as e:
|
173 |
+
status_message = f"提交失败: 网络错误 - {e}"
|
|
|
|
|
|
|
174 |
except Exception as e:
|
175 |
+
status_message = f"提交过程中发生未知错误: {e}\n{traceback.format_exc()}"
|
176 |
+
|
177 |
+
print(f"--- Submission failed or an error occurred for {username}: {status_message} ---")
|
178 |
+
results_df = pd.DataFrame(results_log)
|
179 |
+
return status_message, results_df
|
180 |
|
181 |
|
182 |
# --- Build Gradio Interface using Blocks ---
|
|
|
185 |
gr.Markdown(
|
186 |
"""
|
187 |
**Instructions:**
|
188 |
+
1. Modify the code (if needed) to define your agent's logic.
|
189 |
+
2. Log in to your Hugging Face account using the button below.
|
190 |
+
3. Click 'Run Evaluation & Submit All Answers'.
|
|
|
|
|
191 |
---
|
192 |
**Disclaimers:**
|
193 |
+
This process can take a significant amount of time.
|
194 |
+
If the process seems to restart, it might be due to platform timeouts.
|
195 |
+
Check the application logs on Hugging Face Spaces for more details.
|
196 |
"""
|
197 |
)
|
198 |
|
199 |
gr.LoginButton()
|
|
|
200 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
201 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
202 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
203 |
|
204 |
run_button.click(
|
205 |
fn=run_and_submit_all,
|
206 |
+
outputs=[status_output, results_table],
|
207 |
)
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
211 |
+
# Minimal startup logs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
213 |
+
demo.launch(debug=False, share=True) # debug=False for cleaner logs in production, True for local dev
|