yoon-gu commited on
Commit
b6ebb96
·
verified ·
1 Parent(s): 4f3b1c9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -61
app.py CHANGED
@@ -5,71 +5,11 @@ from langchain_core.runnables import RunnableConfig
5
  from langchain_teddynote.messages import random_uuid
6
  from langchain_core.messages import BaseMessage, HumanMessage
7
  from pprint import pprint
 
8
 
9
  def format_namespace(namespace):
10
  return namespace[-1].split(":")[0] if len(namespace) > 0 else "root graph"
11
 
12
- from langchain_openai import ChatOpenAI
13
- from langgraph.checkpoint.memory import MemorySaver
14
- from langgraph_supervisor import create_supervisor
15
- from langgraph.prebuilt import create_react_agent
16
- from langgraph.checkpoint.memory import MemorySaver, InMemorySaver
17
- from langgraph.store.memory import InMemoryStore
18
-
19
- checkpointer = InMemorySaver()
20
- store = InMemoryStore()
21
-
22
- model = ChatOpenAI(model="gpt-4o")
23
-
24
- # Create specialized agents
25
-
26
- def add(a: float, b: float) -> float:
27
- """Add two numbers."""
28
- return a + b
29
-
30
- def multiply(a: float, b: float) -> float:
31
- """Multiply two numbers."""
32
- return a * b
33
-
34
- def web_search(query: str) -> str:
35
- """Search the web for information."""
36
- return (
37
- "Here are the headcounts for each of the FAANG companies in 2024:\n"
38
- "1. **Facebook (Meta)**: 67,317 employees.\n"
39
- "2. **Apple**: 164,000 employees.\n"
40
- "3. **Amazon**: 1,551,000 employees.\n"
41
- "4. **Netflix**: 14,000 employees.\n"
42
- "5. **Google (Alphabet)**: 181,269 employees."
43
- )
44
-
45
- math_agent = create_react_agent(
46
- model=model,
47
- tools=[add, multiply],
48
- name="math_expert",
49
- prompt="You are a math expert. Always use one tool at a time."
50
- )
51
-
52
- research_agent = create_react_agent(
53
- model=model,
54
- tools=[web_search],
55
- name="research_expert",
56
- prompt="You are a world class researcher with access to web search. Do not do any math."
57
- )
58
-
59
- # Create supervisor workflow
60
- workflow = create_supervisor(
61
- [research_agent, math_agent],
62
- model=model,
63
- prompt=(
64
- "You are a team supervisor managing a research expert and a math expert. "
65
- "For current events, use research_agent. "
66
- "For math problems, use math_agent."
67
- )
68
- )
69
-
70
- # Compile and run
71
- app = workflow.compile()
72
-
73
  def generate_response(message, history):
74
  inputs = {
75
  "messages": [HumanMessage(content=message)],
 
5
  from langchain_teddynote.messages import random_uuid
6
  from langchain_core.messages import BaseMessage, HumanMessage
7
  from pprint import pprint
8
+ from graph import app
9
 
10
  def format_namespace(namespace):
11
  return namespace[-1].split(":")[0] if len(namespace) > 0 else "root graph"
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  def generate_response(message, history):
14
  inputs = {
15
  "messages": [HumanMessage(content=message)],