yoon / app.py
yoon6173's picture
dd
083d7ab
raw
history blame
2.03 kB
import gradio as gr
import requests
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
def greet(url):
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-large-cityscapes-semantic")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-large-cityscapes-semantic")
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
color_map = {
0: (0, 0, 0), # 클래슀 0: 검은색
1: (255, 255, 255), # 클래슀 1: 흰색
2: (255, 0, 0),
3: (0, 255, 0),
4: (0, 0, 255),
5: (255, 255, 0),
6: (255, 0, 255),
7: (0, 255, 255),
# λ‹€λ₯Έ ν΄λž˜μŠ€μ— λŒ€ν•œ 색상 지정
}
#semantic_image = Image.new('RGB', predicted_semantic_map.shape[1:][::-1])[0]
semantic_image = Image.new('RGB', (predicted_semantic_map.shape[1], predicted_semantic_map.shape[0]))
pixels = semantic_image.load()
for y in range(predicted_semantic_map.shape[0]):
for x in range(predicted_semantic_map.shape[1]):
class_id = predicted_semantic_map[y, x].item()
color = color_map.get(class_id, (0, 0, 0))
pixels[x, y] = color
return pixels
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
greet(url)
iface = gr.Interface(
fn=greet,
inputs=gr.Image(value=url),
outputs="image"
)
iface.launch()