|
import gradio as gr |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation |
|
import numpy as np |
|
|
|
|
|
def greet(url): |
|
|
|
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-large-cityscapes-semantic") |
|
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-large-cityscapes-semantic") |
|
|
|
image = Image.open(requests.get(url, stream=True).raw) |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
class_queries_logits = outputs.class_queries_logits |
|
masks_queries_logits = outputs.masks_queries_logits |
|
|
|
|
|
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[url.size])[0] |
|
|
|
sepia_filter = np.array([ |
|
[0.393, 0.769, 0.189], |
|
[0.349, 0.686, 0.168], |
|
[0.272, 0.534, 0.131] |
|
]) |
|
sepia_img = predicted_semantic_map.dot(sepia_filter.T) |
|
sepia_img /= sepia_img.max() |
|
|
|
return sepia_img |
|
|
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
greet(url) |
|
|
|
iface = gr.Interface( |
|
fn=greet, |
|
inputs=gr.Image(value=url), |
|
outputs="image" |
|
) |
|
|
|
iface.launch(debug = True) |
|
|