Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torch.nn as nn | |
# Define your custom model class with detailed layer structures | |
class Head(nn.Module): | |
def __init__(self, head_size): | |
super().__init__() | |
self.key = nn.Linear(64, head_size, bias=False) | |
self.query = nn.Linear(64, head_size, bias=False) | |
self.value = nn.Linear(64, head_size, bias=False) | |
self.register_buffer('tril', torch.tril(torch.ones(32, 32))) | |
self.dropout = nn.Dropout(0.1) | |
def forward(self, x): | |
B, T, C = x.shape | |
k = self.key(x) | |
q = self.query(x) | |
wei = q @ k.transpose(-2, -1) * C**-0.5 | |
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) | |
wei = nn.functional.softmax(wei, dim=-1) | |
wei = self.dropout(wei) | |
v = self.value(x) | |
return wei @ v | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, num_heads, head_size): | |
super().__init__() | |
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) | |
self.proj = nn.Linear(64, 64) | |
self.dropout = nn.Dropout(0.1) | |
def forward(self, x): | |
out = torch.cat([h(x) for h in self.heads], dim=-1) | |
return self.dropout(self.proj(out)) | |
class FeedForward(nn.Module): | |
def __init__(self, n_embd): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(n_embd, 4 * n_embd), | |
nn.ReLU(), | |
nn.Linear(4 * n_embd, n_embd), | |
nn.Dropout(0.1), | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Block(nn.Module): | |
def __init__(self, n_embd, n_head): | |
super().__init__() | |
head_size = n_embd // n_head | |
self.sa = MultiHeadAttention(n_head, head_size) | |
self.ffwd = FeedForward(n_embd) | |
self.ln1 = nn.LayerNorm(n_embd) | |
self.ln2 = nn.LayerNorm(n_embd) | |
def forward(self, x): | |
x = x + self.sa(self.ln1(x)) | |
x = x + self.ffwd(self.ln2(x)) | |
return x | |
class BigramLanguageModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.token_embedding_table = nn.Embedding(61, 64) | |
self.position_embedding_table = nn.Embedding(32, 64) | |
self.blocks = nn.Sequential(*[Block(64, n_head=4) for _ in range(4)]) | |
self.ln_f = nn.LayerNorm(64) | |
self.lm_head = nn.Linear(64, 61) | |
def forward(self, idx, targets=None): | |
B, T = idx.shape | |
tok_emb = self.token_embedding_table(idx) | |
pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device)) | |
x = tok_emb + pos_emb | |
x = self.blocks(x) | |
x = self.ln_f(x) | |
logits = self.lm_head(x) | |
return logits, None | |
def generate(self, idx, max_new_tokens): | |
for _ in range(max_new_tokens): | |
idx_cond = idx[:, -32:] # Truncate to the latest 32 tokens | |
logits, _ = self(idx_cond) | |
logits = logits[:, -1, :] # Get the logits for the last token | |
probs = nn.functional.softmax(logits, dim=-1) | |
idx_next = torch.multinomial(probs, num_samples=1) | |
idx = torch.cat((idx, idx_next), dim=1) | |
return idx | |
# Load the model with strict=False to handle missing or unexpected keys | |
def load_model(): | |
model = BigramLanguageModel() | |
model_url = "https://huggingface.co/yoonusajwardapiit/triptuner/resolve/main/pytorch_model.bin" | |
model_weights = torch.hub.load_state_dict_from_url(model_url, map_location=torch.device('cpu'), weights_only=True) | |
model.load_state_dict(model_weights, strict=False) | |
model.eval() | |
return model | |
model = load_model() | |
# Define a comprehensive character set based on training data | |
# Convert all input to lowercase if the model is trained on lowercase data | |
chars = sorted(list(set("abcdefghijklmnopqrstuvwxyz0123456789 .,!?-:;'\"\n"))) | |
stoi = {ch: i for i, ch in enumerate(chars)} | |
itos = {i: ch for i, ch in enumerate(chars)} | |
encode = lambda s: [stoi.get(c, stoi.get(c.lower(), -1)) for c in s if c in stoi or c.lower() in stoi] # Handles both cases | |
decode = lambda l: ''.join([itos[i] for i in l]) | |
# Function to generate text using the model | |
def generate_text(prompt): | |
try: | |
print(f"Received prompt: {prompt}") | |
encoded_prompt = encode(prompt) | |
# Check for out-of-vocabulary indices | |
if any(idx == -1 for idx in encoded_prompt): | |
return "Error: Input contains characters not in the model vocabulary." | |
# Ensure the prompt length fits within the block size | |
if len(encoded_prompt) > 32: | |
encoded_prompt = encoded_prompt[:32] # Truncate to fit block size | |
context = torch.tensor([encoded_prompt], dtype=torch.long) | |
print(f"Encoded prompt: {context}") | |
with torch.no_grad(): | |
generated = model.generate(context, max_new_tokens=250) # Adjust as needed | |
print(f"Generated tensor: {generated}") | |
result = decode(generated[0].tolist()) | |
print(f"Decoded result: {result}") | |
return result | |
except Exception as e: | |
print(f"Error during generation: {e}") | |
return f"Error: {str(e)}" | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=generate_text, | |
inputs=gr.Textbox(lines=2, placeholder="Enter a location or prompt..."), | |
outputs="text", | |
title="Triptuner Model", | |
description="Generate itineraries for locations in Sri Lanka's Central Province." | |
) | |
# Launch the interface | |
interface.launch() | |