yoonusajwardapiit commited on
Commit
2047d88
1 Parent(s): 7c6534c

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +60 -0
  2. requirements.txt +2 -0
app.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+ # Define your custom model class
7
+ class BigramLanguageModel(nn.Module):
8
+ def __init__(self):
9
+ super().__init__()
10
+ # Example layers (adjust as needed for your model)
11
+ self.token_embedding_table = nn.Embedding(61, 64)
12
+ self.position_embedding_table = nn.Embedding(32, 64)
13
+ self.blocks = nn.Sequential(*[nn.Linear(64, 64) for _ in range(4)])
14
+ self.ln_f = nn.LayerNorm(64)
15
+ self.lm_head = nn.Linear(64, 61)
16
+
17
+ def forward(self, idx):
18
+ # Implement the forward pass
19
+ pass
20
+
21
+ def generate(self, idx, max_new_tokens=250):
22
+ # Implement the generate method
23
+ pass
24
+
25
+ # Load your model
26
+ def load_model():
27
+ model = BigramLanguageModel()
28
+ model_url = "https://huggingface.co/yoonusajwardapiit/triptuner/resolve/main/pytorch_model.bin"
29
+ model_weights = torch.hub.load_state_dict_from_url(model_url, map_location=torch.device('cpu'), weights_only=True)
30
+ model.load_state_dict(model_weights)
31
+ model.eval()
32
+ return model
33
+
34
+ model = load_model()
35
+
36
+ # Define encode and decode functions
37
+ chars = sorted(list(set("your_training_text_here"))) # Replace with the character set used in training
38
+ stoi = {ch: i for i, ch in enumerate(chars)}
39
+ itos = {i: ch for i, ch in enumerate(chars)}
40
+ encode = lambda s: [stoi[c] for c in s]
41
+ decode = lambda l: ''.join([itos[i] for i in l])
42
+
43
+ # Function to generate text using the model
44
+ def generate_text(prompt):
45
+ context = torch.tensor([encode(prompt)], dtype=torch.long)
46
+ with torch.no_grad():
47
+ generated = model.generate(context, max_new_tokens=250) # Adjust as needed
48
+ return decode(generated[0].tolist())
49
+
50
+ # Create a Gradio interface
51
+ interface = gr.Interface(
52
+ fn=generate_text,
53
+ inputs=gr.Textbox(lines=2, placeholder="Enter a location or prompt..."),
54
+ outputs="text",
55
+ title="Triptuner Model",
56
+ description="Generate itineraries for locations in Sri Lanka's Central Province."
57
+ )
58
+
59
+ # Launch the interface
60
+ interface.launch()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ torch
2
+ gradio