import gradio as gr import torch import torch.nn as nn # Define your custom model class with detailed layer structures class Head(nn.Module): def __init__(self, head_size): super().__init__() self.key = nn.Linear(64, head_size, bias=False) self.query = nn.Linear(64, head_size, bias=False) self.value = nn.Linear(64, head_size, bias=False) self.register_buffer('tril', torch.tril(torch.ones(32, 32))) self.dropout = nn.Dropout(0.1) def forward(self, x): B, T, C = x.shape k = self.key(x) q = self.query(x) wei = q @ k.transpose(-2, -1) * C**-0.5 wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) wei = nn.functional.softmax(wei, dim=-1) wei = self.dropout(wei) v = self.value(x) return wei @ v class MultiHeadAttention(nn.Module): def __init__(self, num_heads, head_size): super().__init__() self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) self.proj = nn.Linear(64, 64) self.dropout = nn.Dropout(0.1) def forward(self, x): out = torch.cat([h(x) for h in self.heads], dim=-1) return self.dropout(self.proj(out)) class FeedForward(nn.Module): def __init__(self, n_embd): super().__init__() self.net = nn.Sequential( nn.Linear(n_embd, 4 * n_embd), nn.ReLU(), nn.Linear(4 * n_embd, n_embd), nn.Dropout(0.1), ) def forward(self, x): return self.net(x) class Block(nn.Module): def __init__(self, n_embd, n_head): super().__init__() head_size = n_embd // n_head self.sa = MultiHeadAttention(n_head, head_size) self.ffwd = FeedForward(n_embd) self.ln1 = nn.LayerNorm(n_embd) self.ln2 = nn.LayerNorm(n_embd) def forward(self, x): x = x + self.sa(self.ln1(x)) x = x + self.ffwd(self.ln2(x)) return x class BigramLanguageModel(nn.Module): def __init__(self): super().__init__() self.token_embedding_table = nn.Embedding(61, 64) self.position_embedding_table = nn.Embedding(32, 64) self.blocks = nn.Sequential(*[Block(64, n_head=4) for _ in range(4)]) self.ln_f = nn.LayerNorm(64) self.lm_head = nn.Linear(64, 61) def forward(self, idx, targets=None): B, T = idx.shape tok_emb = self.token_embedding_table(idx) pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device)) x = tok_emb + pos_emb x = self.blocks(x) x = self.ln_f(x) logits = self.lm_head(x) return logits, None def generate(self, idx, max_new_tokens): for _ in range(max_new_tokens): idx_cond = idx[:, -32:] logits, _ = self(idx_cond) logits = logits[:, -1, :] probs = nn.functional.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat((idx, idx_next), dim=1) return idx # Load the model with strict=False to handle missing or unexpected keys def load_model(): model = BigramLanguageModel() model_url = "https://huggingface.co/yoonusajwardapiit/triptuner/resolve/main/pytorch_model.bin" model_weights = torch.hub.load_state_dict_from_url(model_url, map_location=torch.device('cpu'), weights_only=True) model.load_state_dict(model_weights, strict=False) model.eval() return model model = load_model() # Define encode and decode functions chars = sorted(list(set("your_training_text_here"))) # Replace with the character set used in training stoi = {ch: i for i, ch in enumerate(chars)} itos = {i: ch for i, ch in enumerate(chars)} encode = lambda s: [stoi[c] for c in s] decode = lambda l: ''.join([itos[i] for i in l]) # Function to generate text using the model def generate_text(prompt): context = torch.tensor([encode(prompt)], dtype=torch.long) with torch.no_grad(): generated = model.generate(context, max_new_tokens=250) # Adjust as needed return decode(generated[0].tolist()) # Create a Gradio interface interface = gr.Interface( fn=generate_text, inputs=gr.Textbox(lines=2, placeholder="Enter a location or prompt..."), outputs="text", title="Triptuner Model", description="Generate itineraries for locations in Sri Lanka's Central Province." ) # Launch the interface interface.launch()