import gradio as gr import torch import torch.nn as nn # Define your custom model class class BigramLanguageModel(nn.Module): def __init__(self): super().__init__() # Example layers (adjust as needed for your model) self.token_embedding_table = nn.Embedding(61, 64) self.position_embedding_table = nn.Embedding(32, 64) self.blocks = nn.Sequential(*[nn.Linear(64, 64) for _ in range(4)]) self.ln_f = nn.LayerNorm(64) self.lm_head = nn.Linear(64, 61) def forward(self, idx): # Implement the forward pass pass def generate(self, idx, max_new_tokens=250): # Implement the generate method pass # Load your model def load_model(): model = BigramLanguageModel() model_url = "https://huggingface.co/yoonusajwardapiit/triptuner/resolve/main/pytorch_model.bin" model_weights = torch.hub.load_state_dict_from_url(model_url, map_location=torch.device('cpu'), weights_only=True) model.load_state_dict(model_weights) model.eval() return model model = load_model() # Define encode and decode functions chars = sorted(list(set("your_training_text_here"))) # Replace with the character set used in training stoi = {ch: i for i, ch in enumerate(chars)} itos = {i: ch for i, ch in enumerate(chars)} encode = lambda s: [stoi[c] for c in s] decode = lambda l: ''.join([itos[i] for i in l]) # Function to generate text using the model def generate_text(prompt): context = torch.tensor([encode(prompt)], dtype=torch.long) with torch.no_grad(): generated = model.generate(context, max_new_tokens=250) # Adjust as needed return decode(generated[0].tolist()) # Create a Gradio interface interface = gr.Interface( fn=generate_text, inputs=gr.Textbox(lines=2, placeholder="Enter a location or prompt..."), outputs="text", title="Triptuner Model", description="Generate itineraries for locations in Sri Lanka's Central Province." ) # Launch the interface interface.launch()