import os import gradio as gr from transformers import pipeline import cv2 # Load Hugging Face Gender Classifier model (ProjectPersonal/GenderClassifier) gender_classifier = pipeline("image-classification", model="ProjectPersonal/GenderClassifier") # Load a face-swapping model (First Order Motion Model for face swap) # Make sure this model is suitable for face-swapping tasks face_swap_model = pipeline("image-to-image", model="first-order-motion-model/first-order-motion-model") def detect_gender(image_path): # Use the gender classifier to detect gender from the image result = gender_classifier(image_path) # Return the predicted gender (male or female) return result[0]['label'].lower() # This will return "male" or "female" def swap_faces(image, video, selected_gender): # Save uploaded files image_path = "uploaded_image.jpg" video_path = "uploaded_video.mp4" output_path = "swapped_video.mp4" image.save(image_path) video.save(video_path) # Detect gender of the reference image detected_gender = detect_gender(image_path) # If the detected gender matches the selected gender or if "all" is selected, proceed with the face swap if selected_gender == "all" or detected_gender == selected_gender: video_cap = cv2.VideoCapture(video_path) frame_rate = video_cap.get(cv2.CAP_PROP_FPS) width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fourcc = cv2.VideoWriter_fourcc(*'mp4v') output_video = cv2.VideoWriter(output_path, fourcc, frame_rate, (width, height)) while True: ret, frame = video_cap.read() if not ret: break # Apply the face swap model (this will apply the model's logic) # Ensure you replace this with the actual face-swapping function swapped_frame = face_swap_model(frame, reference_image=image_path) # Example, replace with correct function output_video.write(swapped_frame) video_cap.release() output_video.release() else: # Return the original video without face swap if gender doesn't match output_path = video_path # No face swap applied return output_path # Gradio UI iface = gr.Interface( fn=swap_faces, inputs=[ gr.Image(type="pil", label="Upload Reference Image"), gr.Video(type="file", label="Upload Video"), gr.Dropdown(choices=["all", "male", "female"], label="Select Gender") ], outputs=gr.Video(label="Face Swapped Video"), title="Video Face Swap", description="Upload a reference image and a video to swap faces based on gender selection." ) iface.launch()