Spaces:
Runtime error
Runtime error
File size: 13,129 Bytes
21c4e64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from imagedream.camera_utils import get_camera, convert_opengl_to_blender, normalize_camera
from imagedream.model_zoo import build_model
from imagedream.ldm.models.diffusion.ddim import DDIMSampler
from diffusers import DDIMScheduler
class ImageDream(nn.Module):
def __init__(
self,
device,
model_name='sd-v2.1-base-4view-ipmv',
ckpt_path=None,
t_range=[0.02, 0.98],
):
super().__init__()
self.device = device
self.model_name = model_name
self.ckpt_path = ckpt_path
self.model = build_model(self.model_name, ckpt_path=self.ckpt_path).eval().to(self.device)
self.model.device = device
for p in self.model.parameters():
p.requires_grad_(False)
self.dtype = torch.float32
self.num_train_timesteps = 1000
self.min_step = int(self.num_train_timesteps * t_range[0])
self.max_step = int(self.num_train_timesteps * t_range[1])
self.image_embeddings = {}
self.embeddings = {}
self.scheduler = DDIMScheduler.from_pretrained(
"stabilityai/stable-diffusion-2-1-base", subfolder="scheduler", torch_dtype=self.dtype
)
@torch.no_grad()
def get_image_text_embeds(self, image, prompts, negative_prompts):
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
image_pil = TF.to_pil_image(image[0])
image_embeddings = self.model.get_learned_image_conditioning(image_pil).repeat(5,1,1) # [5, 257, 1280]
self.image_embeddings['pos'] = image_embeddings
self.image_embeddings['neg'] = torch.zeros_like(image_embeddings)
self.image_embeddings['ip_img'] = self.encode_imgs(image)
self.image_embeddings['neg_ip_img'] = torch.zeros_like(self.image_embeddings['ip_img'])
pos_embeds = self.encode_text(prompts).repeat(5,1,1)
neg_embeds = self.encode_text(negative_prompts).repeat(5,1,1)
self.embeddings['pos'] = pos_embeds
self.embeddings['neg'] = neg_embeds
return self.image_embeddings['pos'], self.image_embeddings['neg'], self.image_embeddings['ip_img'], self.image_embeddings['neg_ip_img'], self.embeddings['pos'], self.embeddings['neg']
def encode_text(self, prompt):
# prompt: [str]
embeddings = self.model.get_learned_conditioning(prompt).to(self.device)
return embeddings
@torch.no_grad()
def refine(self, pred_rgb, camera,
guidance_scale=5, steps=50, strength=0.8,
):
batch_size = pred_rgb.shape[0]
real_batch_size = batch_size // 4
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
self.scheduler.set_timesteps(steps)
init_step = int(steps * strength)
latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])
camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis)
camera[:, 1] *= -1
camera = normalize_camera(camera).view(batch_size, 16)
# extra view
camera = camera.view(real_batch_size, 4, 16)
camera = torch.cat([camera, torch.zeros_like(camera[:, :1])], dim=1) # [rB, 5, 16]
camera = camera.view(real_batch_size * 5, 16)
camera = camera.repeat(2, 1)
embeddings = torch.cat([self.embeddings['neg'].repeat(real_batch_size, 1, 1), self.embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0)
image_embeddings = torch.cat([self.image_embeddings['neg'].repeat(real_batch_size, 1, 1), self.image_embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0)
ip_img_embeddings= torch.cat([self.image_embeddings['neg_ip_img'].repeat(real_batch_size, 1, 1, 1), self.image_embeddings['ip_img'].repeat(real_batch_size, 1, 1, 1)], dim=0)
context = {
"context": embeddings,
"ip": image_embeddings,
"ip_img": ip_img_embeddings,
"camera": camera,
"num_frames": 4 + 1
}
for i, t in enumerate(self.scheduler.timesteps[init_step:]):
# extra view
latents = latents.view(real_batch_size, 4, 4, 32, 32)
latents = torch.cat([latents, torch.zeros_like(latents[:, :1])], dim=1).view(-1, 4, 32, 32)
latent_model_input = torch.cat([latents] * 2)
tt = torch.cat([t.unsqueeze(0).repeat(real_batch_size * 5)] * 2).to(self.device)
noise_pred = self.model.apply_model(latent_model_input, tt, context)
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
# remove extra view
noise_pred_uncond = noise_pred_uncond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
noise_pred_cond = noise_pred_cond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
latents = latents.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
return imgs
def train_step(
self,
pred_rgb, # [B, C, H, W]
camera, # [B, 4, 4]
step_ratio=None,
guidance_scale=5,
as_latent=False,
):
batch_size = pred_rgb.shape[0]
real_batch_size = batch_size // 4
pred_rgb = pred_rgb.to(self.dtype)
if as_latent:
latents = F.interpolate(pred_rgb, (32, 32), mode="bilinear", align_corners=False) * 2 - 1
else:
# interp to 256x256 to be fed into vae.
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode="bilinear", align_corners=False)
# encode image into latents with vae, requires grad!
latents = self.encode_imgs(pred_rgb_256)
if step_ratio is not None:
# dreamtime-like
# t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
else:
t = torch.randint(self.min_step, self.max_step + 1, (real_batch_size,), dtype=torch.long, device=self.device).repeat(4)
camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis)
camera[:, 1] *= -1
camera = normalize_camera(camera).view(batch_size, 16)
# extra view
camera = camera.view(real_batch_size, 4, 16)
camera = torch.cat([camera, torch.zeros_like(camera[:, :1])], dim=1) # [rB, 5, 16]
camera = camera.view(real_batch_size * 5, 16)
camera = camera.repeat(2, 1)
embeddings = torch.cat([self.embeddings['neg'].repeat(real_batch_size, 1, 1), self.embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0)
image_embeddings = torch.cat([self.image_embeddings['neg'].repeat(real_batch_size, 1, 1), self.image_embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0)
ip_img_embeddings= torch.cat([self.image_embeddings['neg_ip_img'].repeat(real_batch_size, 1, 1, 1), self.image_embeddings['ip_img'].repeat(real_batch_size, 1, 1, 1)], dim=0)
context = {
"context": embeddings,
"ip": image_embeddings,
"ip_img": ip_img_embeddings,
"camera": camera,
"num_frames": 4 + 1
}
# predict the noise residual with unet, NO grad!
with torch.no_grad():
# add noise
noise = torch.randn_like(latents)
latents_noisy = self.model.q_sample(latents, t, noise) # [B=4, 4, 32, 32]
# extra view
t = t.view(real_batch_size, 4)
t = torch.cat([t, t[:, :1]], dim=1).view(-1)
latents_noisy = latents_noisy.view(real_batch_size, 4, 4, 32, 32)
latents_noisy = torch.cat([latents_noisy, torch.zeros_like(latents_noisy[:, :1])], dim=1).view(-1, 4, 32, 32)
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2)
tt = torch.cat([t] * 2)
# import kiui
# kiui.lo(latent_model_input, t, context['context'], context['camera'])
noise_pred = self.model.apply_model(latent_model_input, tt, context)
# perform guidance (high scale from paper!)
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
# remove extra view
noise_pred_uncond = noise_pred_uncond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
noise_pred_cond = noise_pred_cond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
grad = (noise_pred - noise)
grad = torch.nan_to_num(grad)
target = (latents - grad).detach()
loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum') / latents.shape[0]
return loss
def decode_latents(self, latents):
imgs = self.model.decode_first_stage(latents)
imgs = ((imgs + 1) / 2).clamp(0, 1)
return imgs
def encode_imgs(self, imgs):
# imgs: [B, 3, 256, 256]
imgs = 2 * imgs - 1
latents = self.model.get_first_stage_encoding(self.model.encode_first_stage(imgs))
return latents # [B, 4, 32, 32]
@torch.no_grad()
def prompt_to_img(
self,
image,
prompts,
negative_prompts="",
height=256,
width=256,
num_inference_steps=50,
guidance_scale=5.0,
latents=None,
elevation=0,
azimuth_start=0,
):
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(negative_prompts, str):
negative_prompts = [negative_prompts]
real_batch_size = len(prompts)
batch_size = len(prompts) * 5
# Text embeds -> img latents
sampler = DDIMSampler(self.model)
shape = [4, height // 8, width // 8]
c_ = {"context": self.encode_text(prompts).repeat(5,1,1)}
uc_ = {"context": self.encode_text(negative_prompts).repeat(5,1,1)}
# image embeddings
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
image_pil = TF.to_pil_image(image[0])
image_embeddings = self.model.get_learned_image_conditioning(image_pil).repeat(5,1,1).to(self.device)
c_["ip"] = image_embeddings
uc_["ip"] = torch.zeros_like(image_embeddings)
ip_img = self.encode_imgs(image)
c_["ip_img"] = ip_img
uc_["ip_img"] = torch.zeros_like(ip_img)
camera = get_camera(4, elevation=elevation, azimuth_start=azimuth_start, extra_view=True)
camera = camera.repeat(real_batch_size, 1).to(self.device)
c_["camera"] = uc_["camera"] = camera
c_["num_frames"] = uc_["num_frames"] = 5
kiui.lo(image_embeddings, ip_img, camera)
latents, _ = sampler.sample(S=num_inference_steps, conditioning=c_,
batch_size=batch_size, shape=shape,
verbose=False,
unconditional_guidance_scale=guidance_scale,
unconditional_conditioning=uc_,
eta=0, x_T=None)
# Img latents -> imgs
imgs = self.decode_latents(latents) # [4, 3, 256, 256]
kiui.lo(latents, imgs)
# Img to Numpy
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
imgs = (imgs * 255).round().astype("uint8")
return imgs
if __name__ == "__main__":
import argparse
import matplotlib.pyplot as plt
import kiui
parser = argparse.ArgumentParser()
parser.add_argument("image", type=str)
parser.add_argument("prompt", type=str)
parser.add_argument("--negative", default="", type=str)
parser.add_argument("--steps", type=int, default=30)
opt = parser.parse_args()
device = torch.device("cuda")
sd = ImageDream(device)
image = kiui.read_image(opt.image, mode='tensor')
image = image.permute(2, 0, 1).unsqueeze(0).to(device)
while True:
imgs = sd.prompt_to_img(image, opt.prompt, opt.negative, num_inference_steps=opt.steps)
grid = np.concatenate([
np.concatenate([imgs[0], imgs[1]], axis=1),
np.concatenate([imgs[2], imgs[3]], axis=1),
], axis=0)
# visualize image
plt.imshow(grid)
plt.show() |