File size: 9,954 Bytes
21c4e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from mvdream.camera_utils import get_camera, convert_opengl_to_blender, normalize_camera
from mvdream.model_zoo import build_model
from mvdream.ldm.models.diffusion.ddim import DDIMSampler

from diffusers import DDIMScheduler

class MVDream(nn.Module):
    def __init__(
        self,
        device,
        model_name='sd-v2.1-base-4view',
        ckpt_path=None,
        t_range=[0.02, 0.98],
    ):
        super().__init__()

        self.device = device
        self.model_name = model_name
        self.ckpt_path = ckpt_path

        self.model = build_model(self.model_name, ckpt_path=self.ckpt_path).eval().to(self.device)
        self.model.device = device
        for p in self.model.parameters():
            p.requires_grad_(False)

        self.dtype = torch.float32

        self.num_train_timesteps = 1000
        self.min_step = int(self.num_train_timesteps * t_range[0])
        self.max_step = int(self.num_train_timesteps * t_range[1])

        self.embeddings = None

        self.scheduler = DDIMScheduler.from_pretrained(
            "stabilityai/stable-diffusion-2-1-base", subfolder="scheduler", torch_dtype=self.dtype
        )

    @torch.no_grad()
    def get_text_embeds(self, prompts, negative_prompts):
        pos_embeds = self.encode_text(prompts).repeat(4,1,1)  # [1, 77, 768]
        neg_embeds = self.encode_text(negative_prompts).repeat(4,1,1)
        self.embeddings = torch.cat([neg_embeds, pos_embeds], dim=0)  # [2, 77, 768]
    
    def encode_text(self, prompt):
        # prompt: [str]
        embeddings = self.model.get_learned_conditioning(prompt).to(self.device)
        return embeddings
    
    @torch.no_grad()
    def refine(self, pred_rgb, camera,
               guidance_scale=100, steps=50, strength=0.8,
        ):

        batch_size = pred_rgb.shape[0]
        pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
        latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
        # latents = torch.randn((1, 4, 64, 64), device=self.device, dtype=self.dtype)

        self.scheduler.set_timesteps(steps)
        init_step = int(steps * strength)
        latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])

        camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis)
        camera[:, 1] *= -1
        camera = normalize_camera(camera).view(batch_size, 16)
        camera = camera.repeat(2, 1)
        context = {"context": self.embeddings, "camera": camera, "num_frames": 4}

        for i, t in enumerate(self.scheduler.timesteps[init_step:]):
    
            latent_model_input = torch.cat([latents] * 2)
            
            tt = torch.cat([t.unsqueeze(0).repeat(batch_size)] * 2).to(self.device)

            noise_pred = self.model.apply_model(latent_model_input, tt, context)

            noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
            
            latents = self.scheduler.step(noise_pred, t, latents).prev_sample

        imgs = self.decode_latents(latents) # [1, 3, 512, 512]
        return imgs

    def train_step(
        self,
        pred_rgb, # [B, C, H, W], B is multiples of 4
        camera, # [B, 4, 4]
        step_ratio=None,
        guidance_scale=50,
        as_latent=False,
    ):
        
        batch_size = pred_rgb.shape[0]
        pred_rgb = pred_rgb.to(self.dtype)

        if as_latent:
            latents = F.interpolate(pred_rgb, (32, 32), mode="bilinear", align_corners=False) * 2 - 1
        else:
            # interp to 256x256 to be fed into vae.
            pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode="bilinear", align_corners=False)
            # encode image into latents with vae, requires grad!
            latents = self.encode_imgs(pred_rgb_256)

        if step_ratio is not None:
            # dreamtime-like
            # t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
            t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
            t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
        else:
            t = torch.randint(self.min_step, self.max_step + 1, (batch_size,), dtype=torch.long, device=self.device)

        # camera = convert_opengl_to_blender(camera)
        # flip_yz = torch.tensor([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]).unsqueeze(0)
        # camera = torch.matmul(flip_yz.to(camera), camera)
        camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis)
        camera[:, 1] *= -1
        camera = normalize_camera(camera).view(batch_size, 16)

        ###############
        # sampler = DDIMSampler(self.model)
        # shape = [4, 32, 32]
        # c_ = {"context": self.embeddings[4:]}
        # uc_ = {"context": self.embeddings[:4]}

        # # print(camera)

        # # camera = get_camera(4, elevation=0, azimuth_start=0)
        # # camera = camera.repeat(batch_size // 4, 1).to(self.device)

        # # print(camera)

        # c_["camera"] = uc_["camera"] = camera
        # c_["num_frames"] = uc_["num_frames"] = 4

        # latents_, _ = sampler.sample(S=30, conditioning=c_,
        #                                 batch_size=batch_size, shape=shape,
        #                                 verbose=False, 
        #                                 unconditional_guidance_scale=guidance_scale,
        #                                 unconditional_conditioning=uc_,
        #                                 eta=0, x_T=None)

        # # Img latents -> imgs
        # imgs = self.decode_latents(latents_)  # [4, 3, 256, 256]
        # import kiui
        # kiui.vis.plot_image(imgs)
        ###############

        camera = camera.repeat(2, 1)
        context = {"context": self.embeddings, "camera": camera, "num_frames": 4}

        # predict the noise residual with unet, NO grad!
        with torch.no_grad():
            # add noise
            noise = torch.randn_like(latents)
            latents_noisy = self.model.q_sample(latents, t, noise)
            # pred noise
            latent_model_input = torch.cat([latents_noisy] * 2)
            tt = torch.cat([t] * 2)

            # import kiui
            # kiui.lo(latent_model_input, t, context['context'], context['camera'])
            
            noise_pred = self.model.apply_model(latent_model_input, tt, context)

            # perform guidance (high scale from paper!)
            noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond)

        grad = (noise_pred - noise)
        grad = torch.nan_to_num(grad)

        # seems important to avoid NaN...
        # grad = grad.clamp(-1, 1)

        target = (latents - grad).detach()
        loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum') / latents.shape[0]

        return loss

    def decode_latents(self, latents):
        imgs = self.model.decode_first_stage(latents)
        imgs = ((imgs + 1) / 2).clamp(0, 1)
        return imgs

    def encode_imgs(self, imgs):
        # imgs: [B, 3, 256, 256]
        imgs = 2 * imgs - 1
        latents = self.model.get_first_stage_encoding(self.model.encode_first_stage(imgs))
        return latents # [B, 4, 32, 32]

    @torch.no_grad()
    def prompt_to_img(
        self,
        prompts,
        negative_prompts="",
        height=256,
        width=256,
        num_inference_steps=50,
        guidance_scale=7.5,
        latents=None,
        elevation=0,
        azimuth_start=0,
    ):
        if isinstance(prompts, str):
            prompts = [prompts]

        if isinstance(negative_prompts, str):
            negative_prompts = [negative_prompts]
        
        batch_size = len(prompts) * 4

        # Text embeds -> img latents
        sampler = DDIMSampler(self.model)
        shape = [4, height // 8, width // 8]
        c_ = {"context": self.encode_text(prompts).repeat(4,1,1)}
        uc_ = {"context": self.encode_text(negative_prompts).repeat(4,1,1)}

        camera = get_camera(4, elevation=elevation, azimuth_start=azimuth_start)
        camera = camera.repeat(batch_size // 4, 1).to(self.device)

        c_["camera"] = uc_["camera"] = camera
        c_["num_frames"] = uc_["num_frames"] = 4

        latents, _ = sampler.sample(S=num_inference_steps, conditioning=c_,
                                        batch_size=batch_size, shape=shape,
                                        verbose=False, 
                                        unconditional_guidance_scale=guidance_scale,
                                        unconditional_conditioning=uc_,
                                        eta=0, x_T=None)

        # Img latents -> imgs
        imgs = self.decode_latents(latents)  # [4, 3, 256, 256]
        
        # Img to Numpy
        imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
        imgs = (imgs * 255).round().astype("uint8")

        return imgs


if __name__ == "__main__":
    import argparse
    import matplotlib.pyplot as plt

    parser = argparse.ArgumentParser()
    parser.add_argument("prompt", type=str)
    parser.add_argument("--negative", default="", type=str)
    parser.add_argument("--steps", type=int, default=30)
    opt = parser.parse_args()

    device = torch.device("cuda")

    sd = MVDream(device)

    while True:
        imgs = sd.prompt_to_img(opt.prompt, opt.negative, num_inference_steps=opt.steps)

        grid = np.concatenate([
            np.concatenate([imgs[0], imgs[1]], axis=1),
            np.concatenate([imgs[2], imgs[3]], axis=1),
        ], axis=0)

        # visualize image
        plt.imshow(grid)
        plt.show()