Spaces:
Runtime error
Runtime error
File size: 16,344 Bytes
21c4e64 0f432df 21c4e64 e8ff8db 5b9bbe2 e618667 ea60d75 e8ff8db 21c4e64 5b9bbe2 61e8d2c 5b9bbe2 21c4e64 5b9bbe2 61e8d2c 21c4e64 5b9bbe2 21c4e64 b601d28 fc94f83 5b9bbe2 21c4e64 5b9bbe2 21c4e64 5b9bbe2 21c4e64 5b9bbe2 21c4e64 5b9bbe2 c122ae9 61e8d2c 5b9bbe2 21c4e64 c54a4cd 21c4e64 5b9bbe2 21c4e64 b73b3dd 21c4e64 76c0bbe 21c4e64 61e8d2c 21c4e64 cdc7dcc 21c4e64 5b9bbe2 21c4e64 61e8d2c 21c4e64 61e8d2c 21c4e64 61e8d2c 21c4e64 cdc7dcc 61e8d2c 21c4e64 5b9bbe2 21c4e64 5b9bbe2 21c4e64 b73b3dd 21c4e64 e618667 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import gradio as gr
import os
from PIL import Image
import subprocess
from gradio_model4dgs import Model4DGS
import numpy
import hashlib
import shlex
subprocess.run(shlex.split("pip install wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
import rembg
import glob
import cv2
import numpy as np
from diffusers import StableVideoDiffusionPipeline
from scripts.gen_vid import *
import sys
sys.path.append('lgm')
from safetensors.torch import load_file
from kiui.cam import orbit_camera
from core.options import config_defaults, Options
from core.models import LGM
from mvdream.pipeline_mvdream import MVDreamPipeline
from infer_demo import process as process_lgm
from main_4d_demo import process as process_dg4d
import spaces
from huggingface_hub import hf_hub_download
ckpt_path = hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16_fixrot.safetensors")
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
device = torch.device('cuda')
# # device = torch.device('cpu')
session = rembg.new_session(model_name='u2net')
pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
)
pipe.to(device)
opt = config_defaults['big']
opt.resume = ckpt_path
# model
model = LGM(opt)
# resume pretrained checkpoint
if opt.resume is not None:
if opt.resume.endswith('safetensors'):
ckpt = load_file(opt.resume, device='cpu')
else:
ckpt = torch.load(opt.resume, map_location='cpu')
model.load_state_dict(ckpt, strict=False)
print(f'[INFO] Loaded checkpoint from {opt.resume}')
else:
print(f'[WARN] model randomly initialized, are you sure?')
# device
model = model.half().to(device)
model.eval()
rays_embeddings = model.prepare_default_rays(device)
# load image dream
pipe_mvdream = MVDreamPipeline.from_pretrained(
"ashawkey/imagedream-ipmv-diffusers", # remote weights
torch_dtype=torch.float16,
trust_remote_code=True,
# local_files_only=True,
)
pipe_mvdream = pipe_mvdream.to(device)
from guidance.zero123_utils import Zero123
guidance_zero123 = Zero123(device, model_key='ashawkey/stable-zero123-diffusers')
def preprocess(path, recenter=True, size=256, border_ratio=0.2):
files = [path]
out_dir = os.path.dirname(path)
for file in files:
out_base = os.path.basename(file).split('.')[0]
out_rgba = os.path.join(out_dir, out_base + '_rgba.png')
# load image
print(f'[INFO] loading image {file}...')
image = cv2.imread(file, cv2.IMREAD_UNCHANGED)
# carve background
print(f'[INFO] background removal...')
carved_image = rembg.remove(image, session=session) # [H, W, 4]
mask = carved_image[..., -1] > 0
# recenter
if recenter:
print(f'[INFO] recenter...')
final_rgba = np.zeros((size, size, 4), dtype=np.uint8)
coords = np.nonzero(mask)
x_min, x_max = coords[0].min(), coords[0].max()
y_min, y_max = coords[1].min(), coords[1].max()
h = x_max - x_min
w = y_max - y_min
desired_size = int(size * (1 - border_ratio))
scale = desired_size / max(h, w)
h2 = int(h * scale)
w2 = int(w * scale)
x2_min = (size - h2) // 2
x2_max = x2_min + h2
y2_min = (size - w2) // 2
y2_max = y2_min + w2
final_rgba[x2_min:x2_max, y2_min:y2_max] = cv2.resize(carved_image[x_min:x_max, y_min:y_max], (w2, h2), interpolation=cv2.INTER_AREA)
else:
final_rgba = carved_image
# write image
cv2.imwrite(out_rgba, final_rgba)
def gen_vid(input_path, seed, bg='white'):
name = input_path.split('/')[-1].split('.')[0]
input_dir = os.path.dirname(input_path)
height, width = 512, 512
image = load_image(input_path, width, height, bg)
generator = torch.manual_seed(seed)
# frames = pipe(image, height, width, decode_chunk_size=2, generator=generator).frames[0]
frames = pipe(image, height, width, generator=generator).frames[0]
imageio.mimwrite(f"{input_dir}/{name}_generated.mp4", frames, fps=7)
os.makedirs(f"{input_dir}/{name}_frames", exist_ok=True)
for idx, img in enumerate(frames):
img.save(f"{input_dir}/{name}_frames/{idx:03}.png")
# check if there is a picture uploaded or selected
def check_img_input(control_image):
if control_image is None:
raise gr.Error("Please select or upload an input image")
# check if there is a picture uploaded or selected
def check_video_3d_input(image_block: Image.Image):
if image_block is None:
raise gr.Error("Please select or upload an input image")
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
if not os.path.exists(os.path.join('tmp_data', f'{img_hash}_rgba_generated.mp4')):
raise gr.Error("Please generate a video first")
if not os.path.exists(os.path.join('vis_data', f'{img_hash}_rgba_static.mp4')):
raise gr.Error("Please generate a 3D first")
@spaces.GPU()
def optimize_stage_0(image_block: Image.Image, preprocess_chk: bool, seed_slider: int):
if not os.path.exists('tmp_data'):
os.makedirs('tmp_data')
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
if not os.path.exists(os.path.join('tmp_data', f'{img_hash}_rgba.png')):
if preprocess_chk:
# save image to a designated path
image_block.save(os.path.join('tmp_data', f'{img_hash}.png'))
# preprocess image
# print(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}')
# subprocess.run(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}', shell=True)
preprocess(os.path.join("tmp_data", f"{img_hash}.png"))
else:
image_block.save(os.path.join('tmp_data', f'{img_hash}_rgba.png'))
# stage 1
# subprocess.run(f'export MKL_THREADING_LAYER=GNU;export MKL_SERVICE_FORCE_INTEL=1;python scripts/gen_vid.py --path tmp_data/{img_hash}_rgba.png --seed {seed_slider} --bg white', shell=True)
gen_vid(f'tmp_data/{img_hash}_rgba.png', seed_slider)
# return [os.path.join('logs', 'tmp_rgba_model.ply')]
return os.path.join('tmp_data', f'{img_hash}_rgba_generated.mp4')
@spaces.GPU()
def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, seed_slider: int):
if not os.path.exists('tmp_data'):
os.makedirs('tmp_data')
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
if not os.path.exists(os.path.join('tmp_data', f'{img_hash}_rgba.png')):
if preprocess_chk:
# save image to a designated path
image_block.save(os.path.join('tmp_data', f'{img_hash}.png'))
# preprocess image
# print(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}')
# subprocess.run(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}', shell=True)
preprocess(os.path.join("tmp_data", f"{img_hash}.png"))
else:
image_block.save(os.path.join('tmp_data', f'{img_hash}_rgba.png'))
# stage 1
# subprocess.run(f'python lgm/infer.py big --resume {ckpt_path} --test_path tmp_data/{img_hash}_rgba.png', shell=True)
process_lgm(opt, f'tmp_data/{img_hash}_rgba.png', pipe_mvdream, model, rays_embeddings, seed_slider)
# return os.path.join('logs', f'{img_hash}_rgba_model.ply')
return os.path.join('vis_data', f'{img_hash}_rgba_static.mp4')
@spaces.GPU(duration=120)
def optimize_stage_2(image_block: Image.Image, seed_slider: int):
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
# stage 2
# subprocess.run(f'python main_4d.py --config {os.path.join("configs", "4d_demo.yaml")} input={os.path.join("tmp_data", f"{img_hash}_rgba.png")}', shell=True)
process_dg4d(os.path.join("configs", "4d_demo.yaml"), os.path.join("tmp_data", f"{img_hash}_rgba.png"), guidance_zero123)
# os.rename(os.path.join('logs', f'{img_hash}_rgba_frames'), os.path.join('logs', f'{img_hash}_{seed_slider:03d}_rgba_frames'))
image_dir = os.path.join('logs', f'{img_hash}_rgba_frames')
return os.path.join('vis_data', f'{img_hash}_rgba.mp4'), [image_dir+f'/{t:03d}.ply' for t in range(28)]
# return [image_dir+f'/{t:03d}.ply' for t in range(28)]
if __name__ == "__main__":
_TITLE = '''DreamGaussian4D: Generative 4D Gaussian Splatting'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://jiawei-ren.github.io/projects/dreamgaussian4d/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.17142"><img src="https://img.shields.io/badge/2312.17142-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/jiawei-ren/dreamgaussian4d'><img src='https://img.shields.io/github/stars/jiawei-ren/dreamgaussian4d?style=social'/></a>
</div>
We present DreamGausssion4D, an efficient 4D generation framework that builds on Gaussian Splatting.
'''
_IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above), click **Generate Video** and **Generate 3D** (they can run in parallel). Finally, click **Generate 4D**."
example_folder = os.path.join(os.path.dirname(__file__), 'data')
examples_full = [
[example_folder+'/csm_luigi_rgba.png', 10],
[example_folder+'/anya_rgba.png', 42],
[example_folder+'/panda.png', 42262],
]
# Compose demo layout & data flow
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft(), js=js_func) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
# Image-to-3D
with gr.Row(variant='panel'):
with gr.Column(scale=5):
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')
# elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle')
seed_slider = gr.Slider(0, 100000, value=0, step=1, label='Random Seed (Video)')
seed_slider2 = gr.Slider(0, 100000, value=0, step=1, label='Random Seed (3D)')
gr.Markdown(
"random seed for video generation.")
preprocess_chk = gr.Checkbox(True,
label='Preprocess image automatically (remove background and recenter object)')
with gr.Row():
with gr.Column(scale=5):
img_run_btn = gr.Button("Generate Video")
with gr.Column(scale=5):
threed_run_btn = gr.Button("Generate 3D")
fourd_run_btn = gr.Button("Generate 4D")
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True)
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
inputs=[image_block, seed_slider],
outputs=[image_block],
cache_examples=False,
label='Examples (click one of the examples below to start)',
examples_per_page=40
)
with gr.Column(scale=5):
with gr.Row():
with gr.Column(scale=5):
dirving_video = gr.Video(label="video",height=290)
with gr.Column(scale=5):
obj3d = gr.Video(label="3D Model",height=290)
# obj3d = gr.Model3D(label="3D Model",height=290)
video4d = gr.Video(label="4D Render",height=290)
obj4d = Model4DGS(label="4D Model", height=500, fps=21)
img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_0,
inputs=[image_block,
preprocess_chk,
seed_slider],
outputs=[
dirving_video])
threed_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1,
inputs=[image_block,
preprocess_chk,
seed_slider2],
outputs=[
obj3d])
fourd_run_btn.click(check_video_3d_input, inputs=[image_block], queue=False).success(optimize_stage_2, inputs=[image_block, seed_slider], outputs=[video4d, obj4d])
# demo.queue().launch(share=True)
demo.queue(max_size=10) # <-- Sets up a queue with default parameters
demo.launch() |