import os import tyro import glob import imageio import numpy as np import tqdm import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms.functional as TF from safetensors.torch import load_file import kiui from kiui.op import recenter from kiui.cam import orbit_camera from core.options import AllConfigs, Options from core.models import LGM from mvdream.pipeline_mvdream import MVDreamPipeline import cv2 IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) # opt = tyro.cli(AllConfigs) # # model # model = LGM(opt) # # resume pretrained checkpoint # if opt.resume is not None: # if opt.resume.endswith('safetensors'): # ckpt = load_file(opt.resume, device='cpu') # else: # ckpt = torch.load(opt.resume, map_location='cpu') # model.load_state_dict(ckpt, strict=False) # print(f'[INFO] Loaded checkpoint from {opt.resume}') # else: # print(f'[WARN] model randomly initialized, are you sure?') # # device # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # model = model.half().to(device) # model.eval() # process function def process(opt: Options, path, pipe, model, rays_embeddings): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy)) proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device) proj_matrix[0, 0] = 1 / tan_half_fov proj_matrix[1, 1] = 1 / tan_half_fov proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear) proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear) proj_matrix[2, 3] = 1 name = os.path.splitext(os.path.basename(path))[0] print(f'[INFO] Processing {path} --> {name}') os.makedirs('vis_data', exist_ok=True) os.makedirs('logs', exist_ok=True) image = kiui.read_image(path, mode='uint8') # generate mv image = image.astype(np.float32) / 255.0 # rgba to rgb white bg if image.shape[-1] == 4: image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) mv_image = pipe('', image, guidance_scale=5.0, num_inference_steps=30, elevation=0) mv_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32 # generate gaussians input_image = torch.from_numpy(mv_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256] input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False) input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W] with torch.inference_mode(): ############## align azimuth ##################### with torch.autocast(device_type='cuda', dtype=torch.float16): # generate gaussians gaussians = model.forward_gaussians(input_image) best_azi = 0 best_diff = 1e8 for v, azi in enumerate(np.arange(-180, 180, 1)): cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device) cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction # cameras needed by gaussian rasterizer cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4] cam_view_proj = cam_view @ proj_matrix # [V, 4, 4] cam_pos = - cam_poses[:, :3, 3] # [V, 3] # scale = min(azi / 360, 1) scale = 1 result = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale) rendered_image = result['image'] rendered_image = rendered_image.squeeze(1).permute(0,2,3,1).squeeze(0).contiguous().float().cpu().numpy() rendered_image = cv2.resize(rendered_image, (image.shape[0], image.shape[1]), interpolation=cv2.INTER_AREA) diff = np.mean((rendered_image- image) ** 2) if diff < best_diff: best_diff = diff best_azi = azi print("Best aligned azimuth: ", best_azi) mv_image = [] for v, azi in enumerate([0, 90, 180, 270]): cam_poses = torch.from_numpy(orbit_camera(0, azi + best_azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device) cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction # cameras needed by gaussian rasterizer cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4] cam_view_proj = cam_view @ proj_matrix # [V, 4, 4] cam_pos = - cam_poses[:, :3, 3] # [V, 3] # scale = min(azi / 360, 1) scale = 1 result = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale) rendered_image = result['image'] rendered_image = rendered_image.squeeze(1) rendered_image = F.interpolate(rendered_image, (256, 256)) rendered_image = rendered_image.permute(0,2,3,1).contiguous().float().cpu().numpy() mv_image.append(rendered_image) mv_image = np.concatenate(mv_image, axis=0) input_image = torch.from_numpy(mv_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256] input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False) input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W] ################################ with torch.autocast(device_type='cuda', dtype=torch.float16): # generate gaussians gaussians = model.forward_gaussians(input_image) # save gaussians model.gs.save_ply(gaussians, os.path.join('logs', name + '_model.ply')) # render 360 video images = [] elevation = 0 if opt.fancy_video: azimuth = np.arange(0, 720, 4, dtype=np.int32) for azi in tqdm.tqdm(azimuth): cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device) cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction # cameras needed by gaussian rasterizer cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4] cam_view_proj = cam_view @ proj_matrix # [V, 4, 4] cam_pos = - cam_poses[:, :3, 3] # [V, 3] scale = min(azi / 360, 1) image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)['image'] images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8)) else: azimuth = np.arange(0, 360, 2, dtype=np.int32) for azi in tqdm.tqdm(azimuth): cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device) cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction # cameras needed by gaussian rasterizer cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4] cam_view_proj = cam_view @ proj_matrix # [V, 4, 4] cam_pos = - cam_poses[:, :3, 3] # [V, 3] image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image'] images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8)) images = np.concatenate(images, axis=0) imageio.mimwrite(os.path.join('vis_data', name + '_static.mp4'), images, fps=30)