File size: 6,154 Bytes
eef9e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import base64
from pdf2image import convert_from_path
from extract_table_from_image import process_image_using_llm
from pymongo import MongoClient
from datetime import datetime
import uuid
import os
import re
import csv
import requests
from io import StringIO, BytesIO
from dotenv import load_dotenv
import boto3

load_dotenv()

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_BUCKET_NAME = os.getenv("AWS_BUCKET_NAME")
MONGO_URI = os.getenv("MONGO_URI")
DB_NAME = os.getenv("DB_NAME")
COLLECTION_NAME = os.getenv("COLLECTION_NAME")

mongo_client = MongoClient(MONGO_URI)
db = mongo_client[DB_NAME]
collection = db[COLLECTION_NAME]

s3 = boto3.client(
    's3',
    aws_access_key_id=AWS_ACCESS_KEY_ID,
    aws_secret_access_key=AWS_SECRET_ACCESS_KEY
)
pdf_temp_dir = 'temp/pdf_files'
image_temp_dir = 'temp/page_images'
os.makedirs(pdf_temp_dir, exist_ok=True)
os.makedirs(image_temp_dir, exist_ok=True)
pdf_path = os.path.join(pdf_temp_dir, 'downloaded_file.pdf')

def cleanup_directory(directory_path):
    try:
        for filename in os.listdir(directory_path):
            file_path = os.path.join(directory_path, filename)
            if os.path.isfile(file_path):
                os.remove(file_path)
        print(f"Cleaned up files in {directory_path}")
    except Exception as e:
        print(f"Error cleaning up directory {directory_path}: {e}")
def download_and_split_pdf_to_image(url):
    try:
        response = requests.get(url)
        with open(pdf_path, 'wb') as pdf_file:
            pdf_file.write(response.content)


    except Exception as e:
        print(f"error occured during downloading pdf from object url : {e}")
        return None

    try:
        images = convert_from_path(pdf_path)
        for i, image in enumerate(images):
            image_path = os.path.join(image_temp_dir, f'page_{i + 1}.png')
            image.save(image_path, 'PNG')
            print(f'Saved image: {image_path}')
        return True

    except Exception as e:
        print(f"error occured in converting pdf pages to image : {e}")
        return None

def upload_csv_file(file, csv_filename, content_type):
    try:
        # Generate a unique key for the file using UUID
        uuid_str = str(uuid.uuid4())
        s3_key = f'MoSPI_csv_files/{uuid_str}-{csv_filename}'

        # Upload the CSV to S3
        s3.upload_fileobj(
            file,
            AWS_BUCKET_NAME,
            s3_key,
            ExtraArgs={'ContentType': content_type}  # Set the MIME type of the uploaded file
        )

        upload_time = datetime.now()

        # Metadata for MongoDB
        metadata = {
            'name': csv_filename,
            'type': content_type,
            's3_url': f's3://{AWS_BUCKET_NAME}/{s3_key}',
            's3_key': s3_key,
            'object_url': f'https://{AWS_BUCKET_NAME}.s3.amazonaws.com/{s3_key}',
            'date_uploaded': upload_time.strftime('%Y-%m-%d'),
            'time_uploaded': upload_time.strftime('%H:%M:%S')
        }

        return metadata

    except Exception as e:
        print(f"An error occurred during upload: {e}")
        return None

def process_pdf(url,filename):
    split=download_and_split_pdf_to_image(url)
    if split:
        image_files = sorted(
            os.listdir(image_temp_dir),
            key=lambda x: int(re.search(r'page_(\d+)', x).group(1))
        )

        table_datas= []
        for count, image_name in enumerate(image_files, start=1):
            print(f"Processing page {count} of the PDF")
            image_path = os.path.join(image_temp_dir, image_name)
            with open(image_path, "rb") as image_file:
                image_data = base64.b64encode(image_file.read()).decode("utf-8")
                result = process_image_using_llm(image_data,count,3)

                has_table_data=result.get("has_table_data")
                if has_table_data:
                    table_data=result.get("table_data")
                    page_number=result.get("page_number")
                    description = result.get("description")
                    column_summary=result.get("column_summary")
                    best_col1 = result.get("best_col1")
                    best_col2 = result.get("best_col2")


                    csv_buffer = StringIO()
                    csv_writer = csv.DictWriter(csv_buffer, fieldnames=table_data[0].keys())
                    csv_writer.writeheader()
                    csv_writer.writerows(table_data)

                    csv_bytes = BytesIO(csv_buffer.getvalue().encode("utf-8"))
                    csv_filename = f"{filename}_pageNumber_{str(page_number)}.csv"
                    s3_metadata = upload_csv_file(csv_bytes, csv_filename, "text/csv")

                    if s3_metadata:
                        object_url=s3_metadata.get("object_url")
                        s3_url=s3_metadata.get("s3_url")
                        data = {
                            "table_data": table_data,
                            "description": description,
                            "column_summary": column_summary,
                            "page_number": page_number,
                            "csv_object_url":object_url,
                            "csv_s3_url":s3_url,
                            "best_col1": best_col1,
                            "best_col2": best_col2
                        }

                        table_datas.append(data)

                else:
                    print(f"no table data found at page {count}")

        if table_datas:
            collection.update_one({"object_url":url},{"$set":{"table_data":table_datas}})

            cleanup_directory(pdf_temp_dir)
            cleanup_directory(image_temp_dir)
            return True

        else:
            print(f"found no table data in whole pdf")
            cleanup_directory(pdf_temp_dir)
            cleanup_directory(image_temp_dir)
            return False