File size: 8,374 Bytes
eef9e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import pandas as pd
from io import BytesIO
import requests
import streamlit as st
from pymongo import MongoClient
import os
from dotenv import load_dotenv
import json
from pygwalker.api.streamlit import StreamlitRenderer

# Load environment variables
load_dotenv()
MONGO_URI = os.getenv("MONGO_URI")
DB_NAME = os.getenv("DB_NAME")
COLLECTION_NAME = os.getenv("COLLECTION_NAME")

mongo_client = MongoClient(MONGO_URI)
db = mongo_client[DB_NAME]
collection = db[COLLECTION_NAME]

# Load CSV from S3 URL
def load_csv_from_url(object_url):
    response = requests.get(object_url)
    response.raise_for_status()
    return pd.read_csv(BytesIO(response.content))


# Analyze column data
def analyze_column_data(df):
    analysis = {}
    for col in df.columns:
        if pd.api.types.is_numeric_dtype(df[col]):
            analysis[col] = {
                "Mean": df[col].mean(),
                "Median": df[col].median(),
                "Mode": df[col].mode()[0] if not df[col].mode().empty else None,
                "Unique Values": df[col].nunique(),
                "Null Values": df[col].isnull().sum()
            }
        else:
            analysis[col] = {
                "Unique Values": df[col].nunique(),
                "Null Values": df[col].isnull().sum(),
                "Top Categories": df[col].value_counts().head(5).to_dict()
            }
    return analysis


# Display analysis for a selected table
def display_table_analysis(table):
    # Load CSV data
    df = load_csv_from_url(table['csv_object_url'])

    # Check for "total" row
    if df.iloc[-1].astype(str).str.contains("total", case=False).any():
        df = df.iloc[:-1]  # Drop last row if "total" found

    # Table preview
    st.subheader("CSV Preview")
    st.dataframe(df, height=300)

    # Download Button
    st.download_button(
        label="Download CSV",
        data=requests.get(table['csv_object_url']).content,
        file_name="table_data.csv",
        mime="text/csv"
    )

    # Table Description
    if 'description' in table:
        st.subheader("Table Description")
        st.write(table['description'])

    # Column Summary
    st.subheader("Column Summary")
    column_summary = table.get('column_summary', {})
    column_analysis = analyze_column_data(df)

    col1, col2 = st.columns(2)
    for idx, (col_name, col_description) in enumerate(column_summary.items()):
        with col1 if idx % 2 == 0 else col2:
            st.markdown(f"Column Name: **{col_name}**")
            st.write(f"Description: {col_description}")
            analysis = column_analysis.get(col_name, {})
            if pd.api.types.is_numeric_dtype(df[col_name]):
                st.write({
                    "Mean": analysis.get("Mean"),
                    "Median": analysis.get("Median"),
                    "Mode": analysis.get("Mode"),
                    "Unique Values": analysis.get("Unique Values"),
                    "Null Values": analysis.get("Null Values")
                })
            else:
                st.write({
                    "Unique Values": analysis.get("Unique Values"),
                    "Null Values": analysis.get("Null Values"),
                    "Top Categories": analysis.get("Top Categories")
                })

    # Graphical Analysis using Pygwalker
    st.subheader("Graphical Analysis of Table")
    pyg_app = StreamlitRenderer(df)
    pyg_app.explorer()


# Main function to render the View Table Analysis page for PDF tables
def view_pdf_table_analysis_page(url):
    if st.button("Back", key="back_button"):
        st.session_state.page = "view_pdf"
        st.rerun()

    # Retrieve table data for the PDF
    pdf_data = collection.find_one({"object_url": url})
    tables = pdf_data.get("table_data", [])


    # Display the total number of tables
    st.title("PDF Table Analysis")
    st.write(f"Total tables found: {len(tables)}")

    if "selected_table" not in st.session_state or st.session_state.selected_table is None or st.session_state.selected_table >= len(tables):
        st.session_state.selected_table = 0


    selected_table_idx = st.radio(
        "Select a table to analyze",
        options=range(len(tables)),
        format_func=lambda x: f"Analyze Table {x + 1}",
        index=st.session_state.selected_table  # Safely use the default if uninitialized
    )

    st.session_state.selected_table = selected_table_idx


    if st.session_state.selected_table is not None:
        selected_table_data = tables[st.session_state.selected_table]
        st.subheader(f"Analysis for Table {st.session_state.selected_table + 1}")

        csv_url = selected_table_data['csv_object_url']
        df = load_csv_from_url(csv_url)
        if df.iloc[-1].apply(lambda x: "total" in str(x).lower()).any():
            df = df.iloc[:-1]


        st.dataframe(df)  # Interactive, scrollable table

        excel_buffer = BytesIO()
        with pd.ExcelWriter(excel_buffer, engine='openpyxl') as writer:
            df.to_excel(writer, index=False, sheet_name="Sheet1")
        excel_buffer.seek(0)  # Reset buffer position

        # Download Button
        st.download_button(
            label="Download Full Excel Sheet",
            data=excel_buffer,
            file_name="table_data.xlsx",
            mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
        )

        st.markdown("<hr>", unsafe_allow_html=True)
        table_description = selected_table_data.get("description", None)

        if table_description:
            # Table Description
            st.subheader("Table Description")
            st.write(table_description)

        # Column Summary
        st.markdown("<hr>", unsafe_allow_html=True)
        st.subheader("Column Summary")
        with st.container(height=400, border=False):

            column_summary = selected_table_data.get("column_summary", None)

            if column_summary:
                # Column-level descriptions and analysis
                column_analysis = analyze_column_data(df)

                col1, col2 = st.columns(2)
                for idx, (col_name, col_description) in enumerate(column_summary.items()):
                    # Determine which column to use based on the index

                    with col1 if idx % 2 == 0 else col2:
                        st.markdown(f"Column Name : **{col_name}**")
                        st.write(f"Column Description : {col_description}")

                        # Display basic analysis
                        analysis = column_analysis.get(col_name, {})
                        if pd.api.types.is_numeric_dtype(df[col_name]):
                            # Numeric column analysis
                            st.write({
                                "Mean": analysis.get("Mean"),
                                "Median": analysis.get("Median"),
                                "Mode": analysis.get("Mode"),
                                "Unique Values": analysis.get("Unique Values"),
                                "Null Values": analysis.get("Null Values")
                            })
                        else:
                            # Categorical column analysis
                            st.write({
                                "Unique Values": analysis.get("Unique Values"),
                                "Null Values": analysis.get("Null Values"),
                                "Top Categories": analysis.get("Top Categories")
                            })

        st.markdown("<hr>", unsafe_allow_html=True)
        st.subheader("Graphical Analysis of Table")

        best_col1 = selected_table_data.get("best_col1")
        best_col2 = selected_table_data .get("best_col2")
        default_chart_config = {
            "mark": "bar",
            "encoding": {
                "x": {"field": best_col1, "type": "nominal"},
                "y": {"field": best_col2, "type": "quantitative"}
            }
        }

        # Convert default_chart_config to JSON string for Pygwalker spec parameter
        pyg_app = StreamlitRenderer(df, spec=json.dumps(default_chart_config))
        pyg_app.explorer()