Spaces:
Sleeping
Sleeping
Update tools.py
Browse files
tools.py
CHANGED
@@ -1,73 +1,73 @@
|
|
1 |
-
from langchain_core.tools import tool
|
2 |
-
import pinecone
|
3 |
-
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
4 |
-
import os
|
5 |
-
from dotenv import load_dotenv
|
6 |
-
|
7 |
-
load_dotenv()
|
8 |
-
GOOGLE_API_KEY = os.getenv("GEMINI_API_KEY")
|
9 |
-
PINECONE_API = os.getenv("PINECONE_API_KEY")
|
10 |
-
|
11 |
-
google_embeddings = GoogleGenerativeAIEmbeddings(
|
12 |
-
model="models/embedding-001", # Correct model name
|
13 |
-
google_api_key=GOOGLE_API_KEY
|
14 |
-
)
|
15 |
-
|
16 |
-
pc = pinecone.Pinecone(
|
17 |
-
api_key=PINECONE_API
|
18 |
-
)
|
19 |
-
|
20 |
-
PINECONE_INDEX = "rites-pdf"
|
21 |
-
index = pc.Index(PINECONE_INDEX)
|
22 |
-
|
23 |
-
@tool
|
24 |
-
def get_context(query: str) -> str:
|
25 |
-
"""
|
26 |
-
Retrieve context information by performing a semantic search on indexed document chunks.
|
27 |
-
|
28 |
-
This tool embeds the provided user query using a Google Generative AI embeddings model,
|
29 |
-
then queries a Pinecone index to fetch the top 10 matching document chunks. Each match
|
30 |
-
includes metadata such as the text chunk, starting page, ending page, and the source PDF URL.
|
31 |
-
The function aggregates these details into a formatted string.
|
32 |
-
|
33 |
-
Args:
|
34 |
-
query (str): A user query search string used for semantic matching against the document index.
|
35 |
-
|
36 |
-
Returns:
|
37 |
-
str: A formatted string containing the matched document chunks along with their associated metadata,
|
38 |
-
including start page, end page, and PDF URL.
|
39 |
-
"""
|
40 |
-
embedding = google_embeddings.embed_query(query)
|
41 |
-
search_results = index.query(
|
42 |
-
vector=embedding,
|
43 |
-
top_k=
|
44 |
-
include_metadata=True
|
45 |
-
)
|
46 |
-
context = " "
|
47 |
-
count = 1
|
48 |
-
for match in search_results["matches"]:
|
49 |
-
chunk = match["metadata"].get("chunk")
|
50 |
-
url = match["metadata"].get("pdf_url")
|
51 |
-
start_page = match["metadata"].get("start_page")
|
52 |
-
end_page = match["metadata"].get("end_page")
|
53 |
-
|
54 |
-
context += f"""
|
55 |
-
Chunk {count}:
|
56 |
-
{chunk}
|
57 |
-
start_page: {start_page}
|
58 |
-
end_page: {end_page}
|
59 |
-
pdf_url: {url}
|
60 |
-
#########################################
|
61 |
-
"""
|
62 |
-
count += 1
|
63 |
-
|
64 |
-
return context
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
1 |
+
from langchain_core.tools import tool
|
2 |
+
import pinecone
|
3 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
4 |
+
import os
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
load_dotenv()
|
8 |
+
GOOGLE_API_KEY = os.getenv("GEMINI_API_KEY")
|
9 |
+
PINECONE_API = os.getenv("PINECONE_API_KEY")
|
10 |
+
|
11 |
+
google_embeddings = GoogleGenerativeAIEmbeddings(
|
12 |
+
model="models/embedding-001", # Correct model name
|
13 |
+
google_api_key=GOOGLE_API_KEY
|
14 |
+
)
|
15 |
+
|
16 |
+
pc = pinecone.Pinecone(
|
17 |
+
api_key=PINECONE_API
|
18 |
+
)
|
19 |
+
|
20 |
+
PINECONE_INDEX = "rites-pdf"
|
21 |
+
index = pc.Index(PINECONE_INDEX)
|
22 |
+
|
23 |
+
@tool
|
24 |
+
def get_context(query: str) -> str:
|
25 |
+
"""
|
26 |
+
Retrieve context information by performing a semantic search on indexed document chunks.
|
27 |
+
|
28 |
+
This tool embeds the provided user query using a Google Generative AI embeddings model,
|
29 |
+
then queries a Pinecone index to fetch the top 10 matching document chunks. Each match
|
30 |
+
includes metadata such as the text chunk, starting page, ending page, and the source PDF URL.
|
31 |
+
The function aggregates these details into a formatted string.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
query (str): A user query search string used for semantic matching against the document index.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
str: A formatted string containing the matched document chunks along with their associated metadata,
|
38 |
+
including start page, end page, and PDF URL.
|
39 |
+
"""
|
40 |
+
embedding = google_embeddings.embed_query(query)
|
41 |
+
search_results = index.query(
|
42 |
+
vector=embedding,
|
43 |
+
top_k=20, # Retrieve top 10 results
|
44 |
+
include_metadata=True
|
45 |
+
)
|
46 |
+
context = " "
|
47 |
+
count = 1
|
48 |
+
for match in search_results["matches"]:
|
49 |
+
chunk = match["metadata"].get("chunk")
|
50 |
+
url = match["metadata"].get("pdf_url")
|
51 |
+
start_page = match["metadata"].get("start_page")
|
52 |
+
end_page = match["metadata"].get("end_page")
|
53 |
+
|
54 |
+
context += f"""
|
55 |
+
Chunk {count}:
|
56 |
+
{chunk}
|
57 |
+
start_page: {start_page}
|
58 |
+
end_page: {end_page}
|
59 |
+
pdf_url: {url}
|
60 |
+
#########################################
|
61 |
+
"""
|
62 |
+
count += 1
|
63 |
+
|
64 |
+
return context
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|