younes21000 commited on
Commit
5ebcbb6
·
verified ·
1 Parent(s): b2b888c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -4
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  import moviepy.editor as mp
3
  import librosa
 
4
  from transformers import pipeline
5
 
6
  # Load Whisper model for speech-to-text
@@ -45,20 +46,34 @@ def generate_subtitles(video_file, language_name):
45
  # Load the audio file as a waveform using librosa
46
  waveform, sr = librosa.load(audio_path, sr=16000) # sr=16000 for Whisper
47
 
48
- # Pass the waveform (NumPy array) directly to Whisper's ASR model
49
- transcription = asr(waveform)["text"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  print("Starting translation")
52
 
53
  # Translate transcription to the target language using M2M100
54
  translation_pipeline = pipeline('translation', model='facebook/m2m100_418M')
55
  translated_subtitles = translation_pipeline(
56
- transcription,
57
  forced_bos_token_id=translation_pipeline.tokenizer.get_lang_id(target_language)
58
  )[0]["translation_text"]
59
 
60
  # Return subtitles
61
- subtitles = f"Original: {transcription}\nTranslated: {translated_subtitles}"
62
  return subtitles
63
 
64
  except Exception as e:
 
1
  import gradio as gr
2
  import moviepy.editor as mp
3
  import librosa
4
+ import numpy as np
5
  from transformers import pipeline
6
 
7
  # Load Whisper model for speech-to-text
 
46
  # Load the audio file as a waveform using librosa
47
  waveform, sr = librosa.load(audio_path, sr=16000) # sr=16000 for Whisper
48
 
49
+ # Process audio in chunks
50
+ chunk_duration = 30 # seconds
51
+ chunk_size = sr * chunk_duration # number of samples per chunk
52
+ transcriptions = []
53
+
54
+ for i in range(0, len(waveform), chunk_size):
55
+ chunk = waveform[i:i + chunk_size]
56
+ if len(chunk) == 0:
57
+ break # Avoid processing empty chunks
58
+
59
+ # Pass the chunk to Whisper's ASR model
60
+ transcription = asr(chunk)["text"]
61
+ transcriptions.append(transcription)
62
+
63
+ # Combine all transcriptions into a single string
64
+ full_transcription = " ".join(transcriptions)
65
 
66
  print("Starting translation")
67
 
68
  # Translate transcription to the target language using M2M100
69
  translation_pipeline = pipeline('translation', model='facebook/m2m100_418M')
70
  translated_subtitles = translation_pipeline(
71
+ full_transcription,
72
  forced_bos_token_id=translation_pipeline.tokenizer.get_lang_id(target_language)
73
  )[0]["translation_text"]
74
 
75
  # Return subtitles
76
+ subtitles = f"Original: {full_transcription}\nTranslated: {translated_subtitles}"
77
  return subtitles
78
 
79
  except Exception as e: