Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import moviepy.editor as mp
|
3 |
import librosa
|
|
|
4 |
from transformers import pipeline
|
5 |
|
6 |
# Load Whisper model for speech-to-text
|
@@ -45,20 +46,34 @@ def generate_subtitles(video_file, language_name):
|
|
45 |
# Load the audio file as a waveform using librosa
|
46 |
waveform, sr = librosa.load(audio_path, sr=16000) # sr=16000 for Whisper
|
47 |
|
48 |
-
#
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
print("Starting translation")
|
52 |
|
53 |
# Translate transcription to the target language using M2M100
|
54 |
translation_pipeline = pipeline('translation', model='facebook/m2m100_418M')
|
55 |
translated_subtitles = translation_pipeline(
|
56 |
-
|
57 |
forced_bos_token_id=translation_pipeline.tokenizer.get_lang_id(target_language)
|
58 |
)[0]["translation_text"]
|
59 |
|
60 |
# Return subtitles
|
61 |
-
subtitles = f"Original: {
|
62 |
return subtitles
|
63 |
|
64 |
except Exception as e:
|
|
|
1 |
import gradio as gr
|
2 |
import moviepy.editor as mp
|
3 |
import librosa
|
4 |
+
import numpy as np
|
5 |
from transformers import pipeline
|
6 |
|
7 |
# Load Whisper model for speech-to-text
|
|
|
46 |
# Load the audio file as a waveform using librosa
|
47 |
waveform, sr = librosa.load(audio_path, sr=16000) # sr=16000 for Whisper
|
48 |
|
49 |
+
# Process audio in chunks
|
50 |
+
chunk_duration = 30 # seconds
|
51 |
+
chunk_size = sr * chunk_duration # number of samples per chunk
|
52 |
+
transcriptions = []
|
53 |
+
|
54 |
+
for i in range(0, len(waveform), chunk_size):
|
55 |
+
chunk = waveform[i:i + chunk_size]
|
56 |
+
if len(chunk) == 0:
|
57 |
+
break # Avoid processing empty chunks
|
58 |
+
|
59 |
+
# Pass the chunk to Whisper's ASR model
|
60 |
+
transcription = asr(chunk)["text"]
|
61 |
+
transcriptions.append(transcription)
|
62 |
+
|
63 |
+
# Combine all transcriptions into a single string
|
64 |
+
full_transcription = " ".join(transcriptions)
|
65 |
|
66 |
print("Starting translation")
|
67 |
|
68 |
# Translate transcription to the target language using M2M100
|
69 |
translation_pipeline = pipeline('translation', model='facebook/m2m100_418M')
|
70 |
translated_subtitles = translation_pipeline(
|
71 |
+
full_transcription,
|
72 |
forced_bos_token_id=translation_pipeline.tokenizer.get_lang_id(target_language)
|
73 |
)[0]["translation_text"]
|
74 |
|
75 |
# Return subtitles
|
76 |
+
subtitles = f"Original: {full_transcription}\nTranslated: {translated_subtitles}"
|
77 |
return subtitles
|
78 |
|
79 |
except Exception as e:
|