Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import moviepy.editor as mp
|
|
|
|
|
3 |
from transformers import pipeline
|
4 |
|
5 |
# Load Whisper model for speech-to-text
|
@@ -35,14 +37,20 @@ def generate_subtitles(video_file, language_name):
|
|
35 |
|
36 |
# Extract audio from video using moviepy
|
37 |
video = mp.VideoFileClip(video_path)
|
|
|
38 |
audio = video.audio
|
39 |
-
audio.write_audiofile(
|
40 |
|
41 |
print("Starting speech-to-text transcription")
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
print("Starting translation")
|
48 |
|
|
|
1 |
import gradio as gr
|
2 |
import moviepy.editor as mp
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
from transformers import pipeline
|
6 |
|
7 |
# Load Whisper model for speech-to-text
|
|
|
37 |
|
38 |
# Extract audio from video using moviepy
|
39 |
video = mp.VideoFileClip(video_path)
|
40 |
+
audio_path = "temp_audio.wav"
|
41 |
audio = video.audio
|
42 |
+
audio.write_audiofile(audio_path, codec='pcm_s16le')
|
43 |
|
44 |
print("Starting speech-to-text transcription")
|
45 |
|
46 |
+
# Load the audio file as a waveform using librosa
|
47 |
+
waveform, sr = librosa.load(audio_path, sr=16000) # sr=16000 for Whisper
|
48 |
+
|
49 |
+
# Convert the waveform (numpy array) to a list of floats (required by Whisper)
|
50 |
+
waveform_list = waveform.tolist()
|
51 |
+
|
52 |
+
# Pass the waveform to Whisper's ASR model
|
53 |
+
transcription = asr(waveform_list)["text"]
|
54 |
|
55 |
print("Starting translation")
|
56 |
|