Spaces:
Runtime error
Runtime error
""" | |
Hypertile module for splitting attention layers in SD-1.5 U-Net and SD-1.5 VAE | |
Warn: The patch works well only if the input image has a width and height that are multiples of 128 | |
Original author: @tfernd Github: https://github.com/tfernd/HyperTile | |
""" | |
from __future__ import annotations | |
from dataclasses import dataclass | |
from typing import Callable | |
from functools import wraps, cache | |
import math | |
import torch.nn as nn | |
import random | |
from einops import rearrange | |
class HypertileParams: | |
depth = 0 | |
layer_name = "" | |
tile_size: int = 0 | |
swap_size: int = 0 | |
aspect_ratio: float = 1.0 | |
forward = None | |
enabled = False | |
# TODO add SD-XL layers | |
DEPTH_LAYERS = { | |
0: [ | |
# SD 1.5 U-Net (diffusers) | |
"down_blocks.0.attentions.0.transformer_blocks.0.attn1", | |
"down_blocks.0.attentions.1.transformer_blocks.0.attn1", | |
"up_blocks.3.attentions.0.transformer_blocks.0.attn1", | |
"up_blocks.3.attentions.1.transformer_blocks.0.attn1", | |
"up_blocks.3.attentions.2.transformer_blocks.0.attn1", | |
# SD 1.5 U-Net (ldm) | |
"input_blocks.1.1.transformer_blocks.0.attn1", | |
"input_blocks.2.1.transformer_blocks.0.attn1", | |
"output_blocks.9.1.transformer_blocks.0.attn1", | |
"output_blocks.10.1.transformer_blocks.0.attn1", | |
"output_blocks.11.1.transformer_blocks.0.attn1", | |
# SD 1.5 VAE | |
"decoder.mid_block.attentions.0", | |
"decoder.mid.attn_1", | |
], | |
1: [ | |
# SD 1.5 U-Net (diffusers) | |
"down_blocks.1.attentions.0.transformer_blocks.0.attn1", | |
"down_blocks.1.attentions.1.transformer_blocks.0.attn1", | |
"up_blocks.2.attentions.0.transformer_blocks.0.attn1", | |
"up_blocks.2.attentions.1.transformer_blocks.0.attn1", | |
"up_blocks.2.attentions.2.transformer_blocks.0.attn1", | |
# SD 1.5 U-Net (ldm) | |
"input_blocks.4.1.transformer_blocks.0.attn1", | |
"input_blocks.5.1.transformer_blocks.0.attn1", | |
"output_blocks.6.1.transformer_blocks.0.attn1", | |
"output_blocks.7.1.transformer_blocks.0.attn1", | |
"output_blocks.8.1.transformer_blocks.0.attn1", | |
], | |
2: [ | |
# SD 1.5 U-Net (diffusers) | |
"down_blocks.2.attentions.0.transformer_blocks.0.attn1", | |
"down_blocks.2.attentions.1.transformer_blocks.0.attn1", | |
"up_blocks.1.attentions.0.transformer_blocks.0.attn1", | |
"up_blocks.1.attentions.1.transformer_blocks.0.attn1", | |
"up_blocks.1.attentions.2.transformer_blocks.0.attn1", | |
# SD 1.5 U-Net (ldm) | |
"input_blocks.7.1.transformer_blocks.0.attn1", | |
"input_blocks.8.1.transformer_blocks.0.attn1", | |
"output_blocks.3.1.transformer_blocks.0.attn1", | |
"output_blocks.4.1.transformer_blocks.0.attn1", | |
"output_blocks.5.1.transformer_blocks.0.attn1", | |
], | |
3: [ | |
# SD 1.5 U-Net (diffusers) | |
"mid_block.attentions.0.transformer_blocks.0.attn1", | |
# SD 1.5 U-Net (ldm) | |
"middle_block.1.transformer_blocks.0.attn1", | |
], | |
} | |
# XL layers, thanks for GitHub@gel-crabs for the help | |
DEPTH_LAYERS_XL = { | |
0: [ | |
# SD 1.5 U-Net (diffusers) | |
"down_blocks.0.attentions.0.transformer_blocks.0.attn1", | |
"down_blocks.0.attentions.1.transformer_blocks.0.attn1", | |
"up_blocks.3.attentions.0.transformer_blocks.0.attn1", | |
"up_blocks.3.attentions.1.transformer_blocks.0.attn1", | |
"up_blocks.3.attentions.2.transformer_blocks.0.attn1", | |
# SD 1.5 U-Net (ldm) | |
"input_blocks.4.1.transformer_blocks.0.attn1", | |
"input_blocks.5.1.transformer_blocks.0.attn1", | |
"output_blocks.3.1.transformer_blocks.0.attn1", | |
"output_blocks.4.1.transformer_blocks.0.attn1", | |
"output_blocks.5.1.transformer_blocks.0.attn1", | |
# SD 1.5 VAE | |
"decoder.mid_block.attentions.0", | |
"decoder.mid.attn_1", | |
], | |
1: [ | |
# SD 1.5 U-Net (diffusers) | |
#"down_blocks.1.attentions.0.transformer_blocks.0.attn1", | |
#"down_blocks.1.attentions.1.transformer_blocks.0.attn1", | |
#"up_blocks.2.attentions.0.transformer_blocks.0.attn1", | |
#"up_blocks.2.attentions.1.transformer_blocks.0.attn1", | |
#"up_blocks.2.attentions.2.transformer_blocks.0.attn1", | |
# SD 1.5 U-Net (ldm) | |
"input_blocks.4.1.transformer_blocks.1.attn1", | |
"input_blocks.5.1.transformer_blocks.1.attn1", | |
"output_blocks.3.1.transformer_blocks.1.attn1", | |
"output_blocks.4.1.transformer_blocks.1.attn1", | |
"output_blocks.5.1.transformer_blocks.1.attn1", | |
"input_blocks.7.1.transformer_blocks.0.attn1", | |
"input_blocks.8.1.transformer_blocks.0.attn1", | |
"output_blocks.0.1.transformer_blocks.0.attn1", | |
"output_blocks.1.1.transformer_blocks.0.attn1", | |
"output_blocks.2.1.transformer_blocks.0.attn1", | |
"input_blocks.7.1.transformer_blocks.1.attn1", | |
"input_blocks.8.1.transformer_blocks.1.attn1", | |
"output_blocks.0.1.transformer_blocks.1.attn1", | |
"output_blocks.1.1.transformer_blocks.1.attn1", | |
"output_blocks.2.1.transformer_blocks.1.attn1", | |
"input_blocks.7.1.transformer_blocks.2.attn1", | |
"input_blocks.8.1.transformer_blocks.2.attn1", | |
"output_blocks.0.1.transformer_blocks.2.attn1", | |
"output_blocks.1.1.transformer_blocks.2.attn1", | |
"output_blocks.2.1.transformer_blocks.2.attn1", | |
"input_blocks.7.1.transformer_blocks.3.attn1", | |
"input_blocks.8.1.transformer_blocks.3.attn1", | |
"output_blocks.0.1.transformer_blocks.3.attn1", | |
"output_blocks.1.1.transformer_blocks.3.attn1", | |
"output_blocks.2.1.transformer_blocks.3.attn1", | |
"input_blocks.7.1.transformer_blocks.4.attn1", | |
"input_blocks.8.1.transformer_blocks.4.attn1", | |
"output_blocks.0.1.transformer_blocks.4.attn1", | |
"output_blocks.1.1.transformer_blocks.4.attn1", | |
"output_blocks.2.1.transformer_blocks.4.attn1", | |
"input_blocks.7.1.transformer_blocks.5.attn1", | |
"input_blocks.8.1.transformer_blocks.5.attn1", | |
"output_blocks.0.1.transformer_blocks.5.attn1", | |
"output_blocks.1.1.transformer_blocks.5.attn1", | |
"output_blocks.2.1.transformer_blocks.5.attn1", | |
"input_blocks.7.1.transformer_blocks.6.attn1", | |
"input_blocks.8.1.transformer_blocks.6.attn1", | |
"output_blocks.0.1.transformer_blocks.6.attn1", | |
"output_blocks.1.1.transformer_blocks.6.attn1", | |
"output_blocks.2.1.transformer_blocks.6.attn1", | |
"input_blocks.7.1.transformer_blocks.7.attn1", | |
"input_blocks.8.1.transformer_blocks.7.attn1", | |
"output_blocks.0.1.transformer_blocks.7.attn1", | |
"output_blocks.1.1.transformer_blocks.7.attn1", | |
"output_blocks.2.1.transformer_blocks.7.attn1", | |
"input_blocks.7.1.transformer_blocks.8.attn1", | |
"input_blocks.8.1.transformer_blocks.8.attn1", | |
"output_blocks.0.1.transformer_blocks.8.attn1", | |
"output_blocks.1.1.transformer_blocks.8.attn1", | |
"output_blocks.2.1.transformer_blocks.8.attn1", | |
"input_blocks.7.1.transformer_blocks.9.attn1", | |
"input_blocks.8.1.transformer_blocks.9.attn1", | |
"output_blocks.0.1.transformer_blocks.9.attn1", | |
"output_blocks.1.1.transformer_blocks.9.attn1", | |
"output_blocks.2.1.transformer_blocks.9.attn1", | |
], | |
2: [ | |
# SD 1.5 U-Net (diffusers) | |
"mid_block.attentions.0.transformer_blocks.0.attn1", | |
# SD 1.5 U-Net (ldm) | |
"middle_block.1.transformer_blocks.0.attn1", | |
"middle_block.1.transformer_blocks.1.attn1", | |
"middle_block.1.transformer_blocks.2.attn1", | |
"middle_block.1.transformer_blocks.3.attn1", | |
"middle_block.1.transformer_blocks.4.attn1", | |
"middle_block.1.transformer_blocks.5.attn1", | |
"middle_block.1.transformer_blocks.6.attn1", | |
"middle_block.1.transformer_blocks.7.attn1", | |
"middle_block.1.transformer_blocks.8.attn1", | |
"middle_block.1.transformer_blocks.9.attn1", | |
], | |
3 : [] # TODO - separate layers for SD-XL | |
} | |
RNG_INSTANCE = random.Random() | |
def get_divisors(value: int, min_value: int, /, max_options: int = 1) -> list[int]: | |
""" | |
Returns divisors of value that | |
x * min_value <= value | |
in big -> small order, amount of divisors is limited by max_options | |
""" | |
max_options = max(1, max_options) # at least 1 option should be returned | |
min_value = min(min_value, value) | |
divisors = [i for i in range(min_value, value + 1) if value % i == 0] # divisors in small -> big order | |
ns = [value // i for i in divisors[:max_options]] # has at least 1 element # big -> small order | |
return ns | |
def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int: | |
""" | |
Returns a random divisor of value that | |
x * min_value <= value | |
if max_options is 1, the behavior is deterministic | |
""" | |
ns = get_divisors(value, min_value, max_options=max_options) # get cached divisors | |
idx = RNG_INSTANCE.randint(0, len(ns) - 1) | |
return ns[idx] | |
def set_hypertile_seed(seed: int) -> None: | |
RNG_INSTANCE.seed(seed) | |
def largest_tile_size_available(width: int, height: int) -> int: | |
""" | |
Calculates the largest tile size available for a given width and height | |
Tile size is always a power of 2 | |
""" | |
gcd = math.gcd(width, height) | |
largest_tile_size_available = 1 | |
while gcd % (largest_tile_size_available * 2) == 0: | |
largest_tile_size_available *= 2 | |
return largest_tile_size_available | |
def iterative_closest_divisors(hw:int, aspect_ratio:float) -> tuple[int, int]: | |
""" | |
Finds h and w such that h*w = hw and h/w = aspect_ratio | |
We check all possible divisors of hw and return the closest to the aspect ratio | |
""" | |
divisors = [i for i in range(2, hw + 1) if hw % i == 0] # all divisors of hw | |
pairs = [(i, hw // i) for i in divisors] # all pairs of divisors of hw | |
ratios = [w/h for h, w in pairs] # all ratios of pairs of divisors of hw | |
closest_ratio = min(ratios, key=lambda x: abs(x - aspect_ratio)) # closest ratio to aspect_ratio | |
closest_pair = pairs[ratios.index(closest_ratio)] # closest pair of divisors to aspect_ratio | |
return closest_pair | |
def find_hw_candidates(hw:int, aspect_ratio:float) -> tuple[int, int]: | |
""" | |
Finds h and w such that h*w = hw and h/w = aspect_ratio | |
""" | |
h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio)) | |
# find h and w such that h*w = hw and h/w = aspect_ratio | |
if h * w != hw: | |
w_candidate = hw / h | |
# check if w is an integer | |
if not w_candidate.is_integer(): | |
h_candidate = hw / w | |
# check if h is an integer | |
if not h_candidate.is_integer(): | |
return iterative_closest_divisors(hw, aspect_ratio) | |
else: | |
h = int(h_candidate) | |
else: | |
w = int(w_candidate) | |
return h, w | |
def self_attn_forward(params: HypertileParams, scale_depth=True) -> Callable: | |
def wrapper(*args, **kwargs): | |
if not params.enabled: | |
return params.forward(*args, **kwargs) | |
latent_tile_size = max(128, params.tile_size) // 8 | |
x = args[0] | |
# VAE | |
if x.ndim == 4: | |
b, c, h, w = x.shape | |
nh = random_divisor(h, latent_tile_size, params.swap_size) | |
nw = random_divisor(w, latent_tile_size, params.swap_size) | |
if nh * nw > 1: | |
x = rearrange(x, "b c (nh h) (nw w) -> (b nh nw) c h w", nh=nh, nw=nw) # split into nh * nw tiles | |
out = params.forward(x, *args[1:], **kwargs) | |
if nh * nw > 1: | |
out = rearrange(out, "(b nh nw) c h w -> b c (nh h) (nw w)", nh=nh, nw=nw) | |
# U-Net | |
else: | |
hw: int = x.size(1) | |
h, w = find_hw_candidates(hw, params.aspect_ratio) | |
assert h * w == hw, f"Invalid aspect ratio {params.aspect_ratio} for input of shape {x.shape}, hw={hw}, h={h}, w={w}" | |
factor = 2 ** params.depth if scale_depth else 1 | |
nh = random_divisor(h, latent_tile_size * factor, params.swap_size) | |
nw = random_divisor(w, latent_tile_size * factor, params.swap_size) | |
if nh * nw > 1: | |
x = rearrange(x, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw) | |
out = params.forward(x, *args[1:], **kwargs) | |
if nh * nw > 1: | |
out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw) | |
out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw) | |
return out | |
return wrapper | |
def hypertile_hook_model(model: nn.Module, width, height, *, enable=False, tile_size_max=128, swap_size=1, max_depth=3, is_sdxl=False): | |
hypertile_layers = getattr(model, "__webui_hypertile_layers", None) | |
if hypertile_layers is None: | |
if not enable: | |
return | |
hypertile_layers = {} | |
layers = DEPTH_LAYERS_XL if is_sdxl else DEPTH_LAYERS | |
for depth in range(4): | |
for layer_name, module in model.named_modules(): | |
if any(layer_name.endswith(try_name) for try_name in layers[depth]): | |
params = HypertileParams() | |
module.__webui_hypertile_params = params | |
params.forward = module.forward | |
params.depth = depth | |
params.layer_name = layer_name | |
module.forward = self_attn_forward(params) | |
hypertile_layers[layer_name] = 1 | |
model.__webui_hypertile_layers = hypertile_layers | |
aspect_ratio = width / height | |
tile_size = min(largest_tile_size_available(width, height), tile_size_max) | |
for layer_name, module in model.named_modules(): | |
if layer_name in hypertile_layers: | |
params = module.__webui_hypertile_params | |
params.tile_size = tile_size | |
params.swap_size = swap_size | |
params.aspect_ratio = aspect_ratio | |
params.enabled = enable and params.depth <= max_depth | |