from typing import List, Optional import numpy as np from fastapi import FastAPI, Body from fastapi.exceptions import HTTPException from pydantic import BaseModel from PIL import Image import gradio as gr from modules.api.models import * from modules.api import api from scripts import external_code, global_state from scripts.processor import preprocessor_filters from scripts.logging import logger from annotator.openpose import draw_poses, decode_json_as_poses from annotator.openpose.animalpose import draw_animalposes def encode_to_base64(image): if isinstance(image, str): return image elif isinstance(image, Image.Image): return api.encode_pil_to_base64(image) elif isinstance(image, np.ndarray): return encode_np_to_base64(image) else: return "" def encode_np_to_base64(image): pil = Image.fromarray(image) return api.encode_pil_to_base64(pil) def controlnet_api(_: gr.Blocks, app: FastAPI): @app.get("/controlnet/version") async def version(): return {"version": external_code.get_api_version()} @app.get("/controlnet/model_list") async def model_list(update: bool = True): up_to_date_model_list = external_code.get_models(update=update) logger.debug(up_to_date_model_list) return {"model_list": up_to_date_model_list} @app.get("/controlnet/module_list") async def module_list(alias_names: bool = False): _module_list = external_code.get_modules(alias_names) logger.debug(_module_list) return { "module_list": _module_list, "module_detail": external_code.get_modules_detail(alias_names), } @app.get("/controlnet/control_types") async def control_types(): def format_control_type( filtered_preprocessor_list, filtered_model_list, default_option, default_model, ): return { "module_list": filtered_preprocessor_list, "model_list": filtered_model_list, "default_option": default_option, "default_model": default_model, } return { "control_types": { control_type: format_control_type( *global_state.select_control_type(control_type) ) for control_type in preprocessor_filters.keys() } } @app.get("/controlnet/settings") async def settings(): max_models_num = external_code.get_max_models_num() return {"control_net_unit_count": max_models_num} cached_cn_preprocessors = global_state.cache_preprocessors( global_state.cn_preprocessor_modules ) @app.post("/controlnet/detect") async def detect( controlnet_module: str = Body("none", title="Controlnet Module"), controlnet_input_images: List[str] = Body([], title="Controlnet Input Images"), controlnet_processor_res: int = Body( 512, title="Controlnet Processor Resolution" ), controlnet_threshold_a: float = Body(64, title="Controlnet Threshold a"), controlnet_threshold_b: float = Body(64, title="Controlnet Threshold b"), ): controlnet_module = global_state.reverse_preprocessor_aliases.get( controlnet_module, controlnet_module ) if controlnet_module not in cached_cn_preprocessors: raise HTTPException(status_code=422, detail="Module not available") if len(controlnet_input_images) == 0: raise HTTPException(status_code=422, detail="No image selected") logger.info( f"Detecting {str(len(controlnet_input_images))} images with the {controlnet_module} module." ) results = [] poses = [] processor_module = cached_cn_preprocessors[controlnet_module] for input_image in controlnet_input_images: img = external_code.to_base64_nparray(input_image) class JsonAcceptor: def __init__(self) -> None: self.value = None def accept(self, json_dict: dict) -> None: self.value = json_dict json_acceptor = JsonAcceptor() results.append( processor_module( img, res=controlnet_processor_res, thr_a=controlnet_threshold_a, thr_b=controlnet_threshold_b, json_pose_callback=json_acceptor.accept, )[0] ) if "openpose" in controlnet_module: assert json_acceptor.value is not None poses.append(json_acceptor.value) global_state.cn_preprocessor_unloadable.get(controlnet_module, lambda: None)() results64 = list(map(encode_to_base64, results)) res = {"images": results64, "info": "Success"} if poses: res["poses"] = poses return res class Person(BaseModel): pose_keypoints_2d: List[float] hand_right_keypoints_2d: Optional[List[float]] hand_left_keypoints_2d: Optional[List[float]] face_keypoints_2d: Optional[List[float]] class PoseData(BaseModel): people: List[Person] canvas_width: int canvas_height: int @app.post("/controlnet/render_openpose_json") async def render_openpose_json( pose_data: List[PoseData] = Body([], title="Pose json files to render.") ): if not pose_data: return {"info": "No pose data detected."} else: def draw(poses, animals, H, W): if poses: assert len(animals) == 0 return draw_poses(poses, H, W) else: return draw_animalposes(animals, H, W) return { "images": [ encode_to_base64(draw(*decode_json_as_poses(pose.dict()))) for pose in pose_data ], "info": "Success", } try: import modules.script_callbacks as script_callbacks script_callbacks.on_app_started(controlnet_api) except: pass