File size: 24,405 Bytes
3044e63
 
0529094
3044e63
 
 
 
 
 
 
6bd893f
3044e63
6e3fef9
 
0529094
3044e63
15fe46b
5146d8c
 
15fe46b
d50e76e
15fe46b
 
 
b49913f
15fe46b
 
 
 
 
 
b49913f
15fe46b
 
 
 
 
 
3044e63
 
c1b7223
3044e63
6e3fef9
 
 
0529094
3044e63
 
 
 
 
0529094
3044e63
 
 
 
 
 
 
c1b7223
 
3044e63
 
 
0529094
 
c1b7223
3044e63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0529094
3044e63
 
 
 
 
0529094
 
 
 
 
 
 
1291f86
0529094
 
 
c1b7223
 
6bd893f
c1b7223
 
 
 
 
0529094
 
3044e63
acae072
3044e63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bd893f
 
 
 
 
3044e63
6bd893f
 
 
 
 
 
 
 
 
 
 
 
3044e63
 
 
 
 
 
 
 
 
 
78936ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1b7223
 
 
 
78936ff
c1b7223
 
 
 
78936ff
 
0529094
 
1291f86
0529094
 
 
 
 
 
 
 
 
 
 
 
 
 
1291f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1b7223
1291f86
 
 
 
 
 
 
 
 
 
c1b7223
6bd893f
 
c1b7223
6bd893f
c1b7223
6bd893f
 
 
 
 
 
c1b7223
 
3044e63
5146d8c
 
 
 
 
 
 
 
 
 
 
3044e63
 
edd0615
 
 
3044e63
 
acae072
3044e63
 
 
 
 
 
 
 
 
acae072
 
 
 
 
c1b7223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acae072
 
b6e65c7
acae072
 
 
 
 
 
 
 
 
 
 
3044e63
 
edd0615
3044e63
6bd893f
 
 
 
 
0529094
6bd893f
 
 
d922102
 
 
 
 
 
 
 
 
 
1291f86
d922102
 
 
 
 
 
1291f86
d922102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1291f86
d922102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bd893f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d922102
 
 
 
 
 
 
0529094
 
1291f86
 
 
3044e63
d922102
 
 
c1b7223
d922102
 
 
 
 
 
c1b7223
 
 
 
 
 
 
 
 
 
 
d922102
 
 
 
c1b7223
d922102
c1b7223
 
 
6bd893f
c1b7223
d922102
 
c1b7223
 
 
 
d922102
c1b7223
 
6bd893f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044e63
d922102
 
 
 
 
 
 
3044e63
 
d922102
1291f86
 
6bd893f
 
1291f86
3044e63
 
d922102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bd893f
 
 
 
 
 
 
d922102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bd893f
 
 
 
 
 
 
d922102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044e63
0529094
 
d922102
 
 
acae072
 
d922102
3044e63
 
0529094
 
 
 
d922102
0529094
d922102
acae072
 
 
 
 
 
 
0529094
 
 
 
d922102
0529094
 
d922102
0529094
 
 
 
 
d922102
0529094
 
d922102
acae072
 
0529094
acae072
 
 
3044e63
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import torch
import yaml
import json
import pyloudnorm as pyln
from hydra.utils import instantiate
from soxr import resample
from functools import partial
from torchcomp import coef2ms, ms2coef

from modules.utils import chain_functions, vec2statedict, get_chunks
from modules.fx import clip_delay_eq_Q
from plot_utils import get_log_mags_from_eq


title_md = "# Vocal Effects Generator"
description_md = """
This is a demo of the paper [DiffVox: A Differentiable Model for Capturing and Analysing Professional Effects Distributions](https://arxiv.org/abs/2504.14735), accepted at DAFx 2025.
In this demo, you can upload a raw vocal audio file (in mono) and apply random effects to make it sound better!

The effects consist of series of EQ, compressor, delay, and reverb.
The generator is a PCA model derived from 365 vocal effects presets fitted with the same effects chain.
This interface allows you to control the principal components (PCs) of the generator, randomise them, and render the audio.

To give you some idea, we emperically found that the first PC controls the amount of reverb and the second PC controls the amount of brightness.
Note that adding these PCs together does not necessarily mean that their effects are additive in the final audio.
We found sometimes the effects of least important PCs are more perceptible.
Try to play around with the sliders and buttons and see what you can come up with!

Currently only PCs are tweakable, but in the future we will add more controls and visualisation tools.
For example:
- Directly controlling the parameters of the effects
- Visualising the PCA space
- Visualising the frequency responses/dynamic curves of the effects
"""

SLIDER_MAX = 3
SLIDER_MIN = -3
NUMBER_OF_PCS = 4
TEMPERATURE = 0.7
CONFIG_PATH = "presets/rt_config.yaml"
PCA_PARAM_FILE = "presets/internal/gaussian.npz"
INFO_PATH = "presets/internal/info.json"
MASK_PATH = "presets/internal/feature_mask.npy"


with open(CONFIG_PATH) as fp:
    fx_config = yaml.safe_load(fp)["model"]

# Global effect
fx = instantiate(fx_config)
fx.eval()

pca_params = np.load(PCA_PARAM_FILE)
mean = pca_params["mean"]
cov = pca_params["cov"]
eigvals, eigvecs = np.linalg.eigh(cov)
eigvals = np.flip(eigvals, axis=0)
eigvecs = np.flip(eigvecs, axis=1)
U = eigvecs * np.sqrt(eigvals)
U = torch.from_numpy(U).float()
mean = torch.from_numpy(mean).float()
feature_mask = torch.from_numpy(np.load(MASK_PATH))
# Global latent variable
z = torch.zeros_like(mean)

with open(INFO_PATH) as f:
    info = json.load(f)

param_keys = info["params_keys"]
original_shapes = list(
    map(lambda lst: lst if len(lst) else [1], info["params_original_shapes"])
)

*vec2dict_args, _ = get_chunks(param_keys, original_shapes)
vec2dict_args = [param_keys, original_shapes] + vec2dict_args
vec2dict = partial(
    vec2statedict,
    **dict(
        zip(
            [
                "keys",
                "original_shapes",
                "selected_chunks",
                "position",
                "U_matrix_shape",
            ],
            vec2dict_args,
        )
    ),
)
fx.load_state_dict(vec2dict(mean), strict=False)


meter = pyln.Meter(44100)


@torch.no_grad()
def z2fx():
    # close all figures to avoid too many open figures
    plt.close("all")
    x = U @ z + mean
    # print(z)
    fx.load_state_dict(vec2dict(x), strict=False)
    fx.apply(partial(clip_delay_eq_Q, Q=0.707))
    return


@torch.no_grad()
def fx2z():
    plt.close("all")
    state_dict = fx.state_dict()
    flattened = torch.cat([state_dict[k].flatten() for k in param_keys])
    x = flattened[feature_mask]
    z.copy_(U.T @ (x - mean))
    return


@torch.no_grad()
def inference(audio):
    sr, y = audio
    if sr != 44100:
        y = resample(y, sr, 44100)
    if y.dtype.kind != "f":
        y = y / 32768.0

    if y.ndim == 1:
        y = y[:, None]
    loudness = meter.integrated_loudness(y)
    y = pyln.normalize.loudness(y, loudness, -18.0)

    y = torch.from_numpy(y).float().T.unsqueeze(0)
    if y.shape[1] != 1:
        y = y.mean(dim=1, keepdim=True)

    direct, wet = fx(y)
    direct = direct.squeeze(0).T.numpy()
    wet = wet.squeeze(0).T.numpy()
    rendered = direct + wet
    # rendered = fx(y).squeeze(0).T.numpy()
    if np.max(np.abs(rendered)) > 1:
        scaler = np.max(np.abs(rendered))
        rendered = rendered / scaler
        direct = direct / scaler
        wet = wet / scaler
    return (
        (44100, (rendered * 32768).astype(np.int16)),
        (44100, (direct * 32768).astype(np.int16)),
        (
            44100,
            (wet * 32768).astype(np.int16),
        ),
    )


def get_important_pcs(n=10, **kwargs):
    sliders = [
        gr.Slider(minimum=SLIDER_MIN, maximum=SLIDER_MAX, label=f"PC {i}", **kwargs)
        for i in range(1, n + 1)
    ]
    return sliders


def model2json():
    fx_names = ["PK1", "PK2", "LS", "HS", "LP", "HP", "DRC"]
    results = {k: v.toJSON() for k, v in zip(fx_names, fx)} | {
        "Panner": fx[7].pan.toJSON()
    }
    spatial_fx = {
        "DLY": fx[7].effects[0].toJSON() | {"LP": fx[7].effects[0].eq.toJSON()},
        "FDN": fx[7].effects[1].toJSON()
        | {
            "Tone correction PEQ": {
                k: v.toJSON() for k, v in zip(fx_names[:4], fx[7].effects[1].eq)
            }
        },
        "Cross Send (dB)": fx[7].params.sends_0.log10().mul(20).item(),
    }
    replace_neg_inf = lambda d: (
        {k: (replace_neg_inf(v) if v != -np.inf else -1e500) for k, v in d.items()}
        if isinstance(d, dict)
        else d
    )
    return {
        "Direct": results,
        "Sends": spatial_fx,
    }


@torch.no_grad()
def plot_eq():
    fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
    w, eq_log_mags = get_log_mags_from_eq(fx[:6])
    ax.plot(w, sum(eq_log_mags), color="black", linestyle="-")
    for i, eq_log_mag in enumerate(eq_log_mags):
        ax.plot(w, eq_log_mag, "k-", alpha=0.3)
        ax.fill_between(w, eq_log_mag, 0, facecolor="gray", edgecolor="none", alpha=0.1)
    ax.set_xlabel("Frequency (Hz)")
    ax.set_ylabel("Magnitude (dB)")
    ax.set_xlim(20, 20000)
    ax.set_ylim(-40, 20)
    ax.set_xscale("log")
    ax.grid()
    return fig


@torch.no_grad()
def plot_comp():
    fig, ax = plt.subplots(figsize=(6, 5), constrained_layout=True)
    comp = fx[6]
    cmp_th = comp.params.cmp_th.item()
    exp_th = comp.params.exp_th.item()
    cmp_ratio = comp.params.cmp_ratio.item()
    exp_ratio = comp.params.exp_ratio.item()
    make_up = comp.params.make_up.item()
    # print(cmp_ratio, cmp_th, exp_ratio, exp_th, make_up)

    comp_in = np.linspace(-80, 0, 100)
    comp_curve = np.where(
        comp_in > cmp_th,
        comp_in - (comp_in - cmp_th) * (cmp_ratio - 1) / cmp_ratio,
        comp_in,
    )
    comp_out = (
        np.where(
            comp_curve < exp_th,
            comp_curve - (exp_th - comp_curve) / exp_ratio,
            comp_curve,
        )
        + make_up
    )
    ax.plot(comp_in, comp_out, c="black", linestyle="-")
    ax.plot(comp_in, comp_in, c="r", alpha=0.5)
    ax.set_xlabel("Input Level (dB)")
    ax.set_ylabel("Output Level (dB)")
    ax.set_xlim(-80, 0)
    ax.set_ylim(-80, 0)
    ax.grid()
    return fig


@torch.no_grad()
def plot_delay():
    fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
    delay = fx[7].effects[0]
    w, eq_log_mags = get_log_mags_from_eq([delay.eq])
    log_gain = delay.params.gain.log10().item() * 20
    d = delay.params.delay.item() / 1000
    log_mag = sum(eq_log_mags)
    ax.plot(w, log_mag + log_gain, color="black", linestyle="-")

    log_feedback = delay.params.feedback.log10().item() * 20
    for i in range(1, 10):
        feedback_log_mag = log_mag * (i + 1) + log_feedback * i + log_gain
        ax.plot(
            w,
            feedback_log_mag,
            c="black",
            alpha=max(0, (10 - i * d * 4) / 10),
            linestyle="-",
        )

    ax.set_xscale("log")
    ax.set_xlim(20, 20000)
    ax.set_ylim(-80, 0)
    ax.set_xlabel("Frequency (Hz)")
    ax.set_ylabel("Magnitude (dB)")
    ax.grid()
    return fig


@torch.no_grad()
def plot_reverb():
    fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
    fdn = fx[7].effects[1]
    w, eq_log_mags = get_log_mags_from_eq(fdn.eq)

    bc = fdn.params.c.norm() * fdn.params.b.norm()
    log_bc = torch.log10(bc).item() * 20
    eq_log_mags = [x + log_bc / len(eq_log_mags) for x in eq_log_mags]
    ax.plot(w, sum(eq_log_mags), color="black", linestyle="-")

    ax.set_xlabel("Frequency (Hz)")
    ax.set_ylabel("Magnitude (dB)")
    ax.set_xlim(20, 20000)
    ax.set_ylim(-40, 6)
    ax.set_xscale("log")
    ax.grid()
    return fig


@torch.no_grad()
def plot_t60():
    fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
    fdn = fx[7].effects[1]
    gamma = fdn.params.gamma.squeeze().numpy()
    delays = fdn.delays.numpy()
    w = np.linspace(0, 22050, gamma.size)
    t60 = -60 / (20 * np.log10(gamma + 1e-10) / np.min(delays)) / 44100
    ax.plot(w, t60, color="black", linestyle="-")
    ax.set_xlabel("Frequency (Hz)")
    ax.set_ylabel("T60 (s)")
    ax.set_xlim(20, 20000)
    ax.set_ylim(0, 9)
    ax.set_xscale("log")
    ax.grid()
    return fig


@torch.no_grad()
def update_param(m, attr_name, value):
    match type(getattr(m.params, attr_name)):
        case torch.nn.Parameter:
            getattr(m.params, attr_name).data.copy_(value)
        case _:
            setattr(m.params, attr_name, torch.tensor(value))


@torch.no_grad()
def update_atrt(comp, attr_name, value):
    setattr(comp.params, attr_name, ms2coef(torch.tensor(value), 44100))


with gr.Blocks() as demo:
    gr.Markdown(
        title_md,
        elem_id="title",
    )
    with gr.Row():
        gr.Markdown(
            description_md,
            elem_id="description",
        )
        gr.Image("diffvox_diagram.png", elem_id="diagram")

    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(
                type="numpy", sources="upload", label="Input Audio", loop=True
            )
            with gr.Row():
                random_button = gr.Button(
                    f"Randomise PCs",
                    elem_id="randomise-button",
                )
                reset_button = gr.Button(
                    "Reset",
                    elem_id="reset-button",
                )
                render_button = gr.Button(
                    "Run", elem_id="render-button", variant="primary"
                )
            # random_rest_checkbox = gr.Checkbox(
            #     label=f"Randomise PCs > {NUMBER_OF_PCS} (default to zeros)",
            #     value=False,
            #     elem_id="randomise-checkbox",
            # )
            # sliders = get_important_pcs(NUMBER_OF_PCS, value=0)
            with gr.Row():
                s1 = gr.Slider(
                    minimum=SLIDER_MIN,
                    maximum=SLIDER_MAX,
                    label="PC 1",
                    value=0,
                    interactive=True,
                )
                s2 = gr.Slider(
                    minimum=SLIDER_MIN,
                    maximum=SLIDER_MAX,
                    label="PC 2",
                    value=0,
                    interactive=True,
                )

            with gr.Row():
                s3 = gr.Slider(
                    minimum=SLIDER_MIN,
                    maximum=SLIDER_MAX,
                    label="PC 3",
                    value=0,
                    interactive=True,
                )
                s4 = gr.Slider(
                    minimum=SLIDER_MIN,
                    maximum=SLIDER_MAX,
                    label="PC 4",
                    value=0,
                    interactive=True,
                )

            sliders = [s1, s2, s3, s4]

            extra_pc_dropdown = gr.Dropdown(
                list(range(NUMBER_OF_PCS + 1, mean.numel() + 1)),
                label=f"PC > {NUMBER_OF_PCS}",
                info="Select which extra PC to adjust",
                interactive=True,
            )
            extra_slider = gr.Slider(
                minimum=SLIDER_MIN,
                maximum=SLIDER_MAX,
                label="Extra PC",
                value=0,
            )

        with gr.Column():
            audio_output = gr.Audio(
                type="numpy", label="Output Audio", interactive=False, loop=True
            )
            direct_output = gr.Audio(
                type="numpy", label="Direct Audio", interactive=False, loop=True
            )
            wet_output = gr.Audio(
                type="numpy", label="Wet Audio", interactive=False, loop=True
            )

    _ = gr.Markdown("## Parametric EQ")
    peq_plot = gr.Plot(plot_eq(), label="PEQ Frequency Response", elem_id="peq-plot")
    with gr.Row():
        with gr.Column(min_width=160):
            _ = gr.Markdown("High Pass")
            hp = fx[5]
            hp_freq = gr.Slider(
                minimum=16,
                maximum=5300,
                value=hp.params.freq.item(),
                interactive=True,
                label="Frequency (Hz)",
            )
            hp_q = gr.Slider(
                minimum=0.5,
                maximum=10,
                value=hp.params.Q.item(),
                interactive=True,
                label="Q",
            )

        with gr.Column(min_width=160):
            _ = gr.Markdown("Low Shelf")
            ls = fx[2]
            ls_freq = gr.Slider(
                minimum=30,
                maximum=200,
                value=ls.params.freq.item(),
                interactive=True,
                label="Frequency (Hz)",
            )
            ls_gain = gr.Slider(
                minimum=-12,
                maximum=12,
                value=ls.params.gain.item(),
                interactive=True,
                label="Gain (dB)",
            )

        with gr.Column(min_width=160):
            _ = gr.Markdown("Peak filter 1")
            pk1 = fx[0]
            pk1_freq = gr.Slider(
                minimum=33,
                maximum=5400,
                value=pk1.params.freq.item(),
                interactive=True,
                label="Frequency (Hz)",
            )
            pk1_gain = gr.Slider(
                minimum=-12,
                maximum=12,
                value=pk1.params.gain.item(),
                interactive=True,
                label="Gain (dB)",
            )
            pk1_q = gr.Slider(
                minimum=0.2,
                maximum=20,
                value=pk1.params.Q.item(),
                interactive=True,
                label="Q",
            )
        with gr.Column(min_width=160):
            _ = gr.Markdown("Peak filter 2")
            pk2 = fx[1]
            pk2_freq = gr.Slider(
                minimum=200,
                maximum=17500,
                value=pk2.params.freq.item(),
                interactive=True,
                label="Frequency (Hz)",
            )
            pk2_gain = gr.Slider(
                minimum=-12,
                maximum=12,
                value=pk2.params.gain.item(),
                interactive=True,
                label="Gain (dB)",
            )
            pk2_q = gr.Slider(
                minimum=0.2,
                maximum=20,
                value=pk2.params.Q.item(),
                interactive=True,
                label="Q",
            )

        with gr.Column(min_width=160):
            _ = gr.Markdown("High Shelf")
            hs = fx[3]
            hs_freq = gr.Slider(
                minimum=750,
                maximum=8300,
                value=hs.params.freq.item(),
                interactive=True,
                label="Frequency (Hz)",
            )
            hs_gain = gr.Slider(
                minimum=-12,
                maximum=12,
                value=hs.params.gain.item(),
                interactive=True,
                label="Gain (dB)",
            )
        with gr.Column(min_width=160):
            _ = gr.Markdown("Low Pass")
            lp = fx[4]
            lp_freq = gr.Slider(
                minimum=200,
                maximum=18000,
                value=lp.params.freq.item(),
                interactive=True,
                label="Frequency (Hz)",
            )
            lp_q = gr.Slider(
                minimum=0.5,
                maximum=10,
                value=lp.params.Q.item(),
                interactive=True,
                label="Q",
            )

    _ = gr.Markdown("## Compressor and Expander")
    with gr.Row():
        with gr.Column():
            comp = fx[6]
            cmp_th = gr.Slider(
                minimum=-60,
                maximum=0,
                value=comp.params.cmp_th.item(),
                interactive=True,
                label="Comp. Threshold (dB)",
            )
            cmp_ratio = gr.Slider(
                minimum=1,
                maximum=20,
                value=comp.params.cmp_ratio.item(),
                interactive=True,
                label="Comp. Ratio",
            )
            make_up = gr.Slider(
                minimum=-12,
                maximum=12,
                value=comp.params.make_up.item(),
                interactive=True,
                label="Make Up (dB)",
            )
            attack_time = gr.Slider(
                minimum=0.1,
                maximum=100,
                value=coef2ms(comp.params.at, 44100).item(),
                interactive=True,
                label="Attack Time (ms)",
            )
            release_time = gr.Slider(
                minimum=50,
                maximum=1000,
                value=coef2ms(comp.params.rt, 44100).item(),
                interactive=True,
                label="Release Time (ms)",
            )
            exp_ratio = gr.Slider(
                minimum=0,
                maximum=1,
                value=comp.params.exp_ratio.item(),
                interactive=True,
                label="Exp. Ratio",
            )
            exp_th = gr.Slider(
                minimum=-80,
                maximum=0,
                value=comp.params.exp_th.item(),
                interactive=True,
                label="Exp. Threshold (dB)",
            )
        with gr.Column():
            comp_plot = gr.Plot(
                plot_comp(), label="Compressor Curve", elem_id="comp-plot"
            )
    delay_plot = gr.Plot(
        plot_delay(), label="Delay Frequency Response", elem_id="delay-plot"
    )
    reverb_plot = gr.Plot(
        plot_reverb(), label="Reverb Tone Correction PEQ", elem_id="reverb-plot"
    )
    t60_plot = gr.Plot(plot_t60(), label="Reverb T60", elem_id="t60-plot")

    with gr.Row():
        json_output = gr.JSON(
            model2json(), label="Effect Settings", max_height=800, open=True
        )

    update_pc = lambda i: z[:NUMBER_OF_PCS].tolist() + [z[i - 1].item()]
    update_pc_outputs = sliders + [extra_slider]

    for eq, s, attr_name in zip(
        [fx[0]] * 3
        + [fx[1]] * 3
        + [fx[2]] * 2
        + [fx[3]] * 2
        + [fx[4]] * 2
        + [fx[5]] * 2,
        [
            pk1_freq,
            pk1_gain,
            pk1_q,
            pk2_freq,
            pk2_gain,
            pk2_q,
            ls_freq,
            ls_gain,
            hs_freq,
            hs_gain,
            lp_freq,
            lp_q,
            hp_freq,
            hp_q,
        ],
        ["freq", "gain", "Q"] * 2 + ["freq", "gain"] * 2 + ["freq", "Q"] * 2,
    ):
        s.input(
            lambda *args, eq=eq, attr_name=attr_name: chain_functions(  # chain_functions(
                lambda args: (update_param(eq, attr_name, args[0]), args[1]),
                lambda args: (fx2z(), args[1]),
                lambda args: args[1],
                lambda i: update_pc(i) + [model2json(), plot_eq()],
            )(
                args
            ),
            inputs=[s, extra_pc_dropdown],
            outputs=update_pc_outputs + [json_output, peq_plot],
        )

    for f, s, attr_name in zip(
        [update_param] * 5 + [update_atrt] * 2,
        [
            cmp_th,
            cmp_ratio,
            make_up,
            exp_ratio,
            exp_th,
            attack_time,
            release_time,
        ],
        ["cmp_th", "cmp_ratio", "make_up", "exp_ratio", "exp_th", "at", "rt"],
    ):
        s.input(
            lambda *args, attr_name=attr_name, f=f: chain_functions(
                lambda args: (f(comp, attr_name, args[0]), args[1]),
                lambda args: (fx2z(), args[1]),
                lambda args: args[1],
                lambda i: update_pc(i) + [model2json(), plot_comp()],
            )(args),
            inputs=[s, extra_pc_dropdown],
            outputs=update_pc_outputs + [json_output, comp_plot],
        )

    render_button.click(
        # lambda *args: (
        #     lambda x: (
        #         x,
        #         model2json(),
        #     )
        # )(inference(*args)),
        inference,
        inputs=[
            audio_input,
        ],
        outputs=[
            audio_output,
            direct_output,
            wet_output,
        ],
    )

    update_fx = lambda: [
        pk1.params.freq.item(),
        pk1.params.gain.item(),
        pk1.params.Q.item(),
        pk2.params.freq.item(),
        pk2.params.gain.item(),
        pk2.params.Q.item(),
        ls.params.freq.item(),
        ls.params.gain.item(),
        hs.params.freq.item(),
        hs.params.gain.item(),
        lp.params.freq.item(),
        lp.params.Q.item(),
        hp.params.freq.item(),
        hp.params.Q.item(),
        comp.params.cmp_th.item(),
        comp.params.cmp_ratio.item(),
        comp.params.make_up.item(),
        comp.params.exp_th.item(),
        comp.params.exp_ratio.item(),
        coef2ms(comp.params.at, 44100).item(),
        coef2ms(comp.params.rt, 44100).item(),
    ]
    update_fx_outputs = [
        pk1_freq,
        pk1_gain,
        pk1_q,
        pk2_freq,
        pk2_gain,
        pk2_q,
        ls_freq,
        ls_gain,
        hs_freq,
        hs_gain,
        lp_freq,
        lp_q,
        hp_freq,
        hp_q,
        cmp_th,
        cmp_ratio,
        make_up,
        exp_th,
        exp_ratio,
        attack_time,
        release_time,
    ]
    update_plots = lambda: [
        plot_eq(),
        plot_comp(),
        plot_delay(),
        plot_reverb(),
        plot_t60(),
    ]
    update_plots_outputs = [
        peq_plot,
        comp_plot,
        delay_plot,
        reverb_plot,
        t60_plot,
    ]

    update_all = lambda i: update_pc(i) + update_fx() + update_plots()
    update_all_outputs = update_pc_outputs + update_fx_outputs + update_plots_outputs

    random_button.click(
        chain_functions(
            lambda i: (z.normal_(0, 1).clip_(SLIDER_MIN, SLIDER_MAX), i),
            lambda args: (z2fx(), args[1]),
            lambda args: args[1],
            update_all,
        ),
        inputs=extra_pc_dropdown,
        outputs=update_all_outputs,
    )
    reset_button.click(
        # lambda: (lambda _: [0 for _ in range(NUMBER_OF_PCS + 1)])(z.zero_()),
        lambda: chain_functions(
            lambda _: z.zero_(),
            lambda _: z2fx(),
            lambda _: update_all(NUMBER_OF_PCS),
        )(None),
        outputs=update_all_outputs,
    )

    def update_z(s, i):
        z[i] = s
        return

    for i, slider in enumerate(sliders):
        slider.input(
            chain_functions(
                partial(update_z, i=i),
                lambda _: z2fx(),
                lambda _: update_fx() + update_plots() + [model2json()],
            ),
            inputs=slider,
            outputs=update_fx_outputs + update_plots_outputs + [json_output],
        )
    extra_slider.input(
        lambda *xs: chain_functions(
            lambda args: update_z(args[0], args[1] - 1),
            lambda _: z2fx(),
            lambda _: update_fx() + update_plots() + [model2json()],
        )(xs),
        inputs=[extra_slider, extra_pc_dropdown],
        outputs=update_fx_outputs + update_plots_outputs + [json_output],
    )

    extra_pc_dropdown.input(
        lambda i: z[i - 1].item(),
        inputs=extra_pc_dropdown,
        outputs=extra_slider,
    )

demo.launch()