Spaces:
Running
Running
File size: 1,350 Bytes
e3bff8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import numpy as np
import torch
from scipy.signal import freqz
from typing import Iterable
from modules import fx
from modules.functional import (
highpass_biquad_coef,
lowpass_biquad_coef,
highshelf_biquad_coef,
lowshelf_biquad_coef,
equalizer_biquad_coef,
)
def get_log_mags_from_eq(eq: Iterable, worN=1024, sr=44100):
get_ba = lambda xs: torch.cat([x.view(1) for x in xs]).view(2, 3)
def f(biquad):
params = biquad.params
match type(biquad):
case fx.HighPass:
coeffs = highpass_biquad_coef(sr, params.freq, params.Q)
case fx.LowPass:
coeffs = lowpass_biquad_coef(sr, params.freq, params.Q)
case fx.HighShelf:
coeffs = highshelf_biquad_coef(sr, params.freq, params.gain, biquad.Q)
case fx.LowShelf:
coeffs = lowshelf_biquad_coef(sr, params.freq, params.gain, biquad.Q)
case fx.Peak:
coeffs = equalizer_biquad_coef(sr, params.freq, params.gain, params.Q)
case _:
raise ValueError(biquad)
b, a = get_ba(coeffs)
w, h = freqz(b.numpy(), a.numpy(), worN, fs=sr)
log_h = 20 * np.log10(np.abs(h) + 1e-10)
return w, log_h
log_mags = list(map(f, eq))
return log_mags[0][0], [x for _, x in log_mags]
|