Spaces:
Running
Running
Commit
·
d737ecd
1
Parent(s):
cd0e63d
manually copy part of the diffvox source code
Browse files- modules/functional.py +229 -0
- modules/fx.py +994 -0
- modules/rt.py +150 -0
- modules/utils.py +64 -0
- presets/fx_config.yaml +188 -0
- presets/internal/info.json +1695 -0
- presets/medleydb/info.json +441 -0
- presets/rt_config.yaml +190 -0
modules/functional.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torchcomp import compexp_gain, db2amp
|
4 |
+
from torchlpc import sample_wise_lpc
|
5 |
+
from typing import List, Tuple, Union, Any, Optional
|
6 |
+
import math
|
7 |
+
|
8 |
+
|
9 |
+
def inv_22(a, b, c, d):
|
10 |
+
return torch.stack([d, -b, -c, a]).view(2, 2) / (a * d - b * c)
|
11 |
+
|
12 |
+
|
13 |
+
def eig_22(a, b, c, d):
|
14 |
+
# https://croninprojects.org/Vince/Geodesy/FindingEigenvectors.pdf
|
15 |
+
T = a + d
|
16 |
+
D = a * d - b * c
|
17 |
+
half_T = T * 0.5
|
18 |
+
root = torch.sqrt(half_T * half_T - D) # + 0j)
|
19 |
+
L = torch.stack([half_T + root, half_T - root])
|
20 |
+
|
21 |
+
y = (L - a) / b
|
22 |
+
# y = c / L
|
23 |
+
V = torch.stack([torch.ones_like(y), y])
|
24 |
+
return L, V / V.abs().square().sum(0).sqrt()
|
25 |
+
|
26 |
+
|
27 |
+
def fir(x, b):
|
28 |
+
padded = F.pad(x.reshape(-1, 1, x.size(-1)), (b.size(0) - 1, 0))
|
29 |
+
return F.conv1d(padded, b.flip(0).view(1, 1, -1)).view(*x.shape)
|
30 |
+
|
31 |
+
|
32 |
+
def allpole(x: torch.Tensor, a: torch.Tensor):
|
33 |
+
h = x.reshape(-1, x.shape[-1])
|
34 |
+
return sample_wise_lpc(
|
35 |
+
h,
|
36 |
+
a.broadcast_to(h.shape + a.shape),
|
37 |
+
).reshape(*x.shape)
|
38 |
+
|
39 |
+
|
40 |
+
def biquad(x: torch.Tensor, b0, b1, b2, a0, a1, a2):
|
41 |
+
b0 = b0 / a0
|
42 |
+
b1 = b1 / a0
|
43 |
+
b2 = b2 / a0
|
44 |
+
a1 = a1 / a0
|
45 |
+
a2 = a2 / a0
|
46 |
+
|
47 |
+
beta1 = b1 - b0 * a1
|
48 |
+
beta2 = b2 - b0 * a2
|
49 |
+
|
50 |
+
tmp = a1.square() - 4 * a2
|
51 |
+
if tmp < 0:
|
52 |
+
pole = 0.5 * (-a1 + 1j * torch.sqrt(-tmp))
|
53 |
+
u = -1j * x[..., :-1]
|
54 |
+
h = sample_wise_lpc(
|
55 |
+
u.reshape(-1, u.shape[-1]),
|
56 |
+
-pole.broadcast_to(u.shape).reshape(-1, u.shape[-1], 1),
|
57 |
+
).reshape(*u.shape)
|
58 |
+
h = (
|
59 |
+
h.real * (beta1 * pole.real / pole.imag + beta2 / pole.imag)
|
60 |
+
- beta1 * h.imag
|
61 |
+
)
|
62 |
+
else:
|
63 |
+
L, V = eig_22(-a1, -a2, torch.ones_like(a1), torch.zeros_like(a1))
|
64 |
+
inv_V = inv_22(*V.view(-1))
|
65 |
+
|
66 |
+
C = torch.stack([beta1, beta2]) @ V
|
67 |
+
|
68 |
+
# project input to eigen space
|
69 |
+
h = x[..., :-1].unsqueeze(-2) * inv_V[:, :1]
|
70 |
+
L = L.unsqueeze(-1).broadcast_to(h.shape)
|
71 |
+
|
72 |
+
h = (
|
73 |
+
sample_wise_lpc(h.reshape(-1, h.shape[-1]), -L.reshape(-1, L.shape[-1], 1))
|
74 |
+
.reshape(*h.shape)
|
75 |
+
.transpose(-2, -1)
|
76 |
+
) @ C
|
77 |
+
tmp = b0 * x
|
78 |
+
y = torch.cat([tmp[..., :1], h + tmp[..., 1:]], -1)
|
79 |
+
return y
|
80 |
+
|
81 |
+
|
82 |
+
def highpass_biquad_coef(
|
83 |
+
sample_rate: int,
|
84 |
+
cutoff_freq: torch.Tensor,
|
85 |
+
Q: torch.Tensor,
|
86 |
+
):
|
87 |
+
w0 = 2 * torch.pi * cutoff_freq / sample_rate
|
88 |
+
alpha = torch.sin(w0) / 2.0 / Q
|
89 |
+
|
90 |
+
b0 = (1 + torch.cos(w0)) / 2
|
91 |
+
b1 = -1 - torch.cos(w0)
|
92 |
+
b2 = b0
|
93 |
+
a0 = 1 + alpha
|
94 |
+
a1 = -2 * torch.cos(w0)
|
95 |
+
a2 = 1 - alpha
|
96 |
+
return b0, b1, b2, a0, a1, a2
|
97 |
+
|
98 |
+
|
99 |
+
def apply_biquad(bq):
|
100 |
+
return lambda waveform, *args, **kwargs: biquad(waveform, *bq(*args, **kwargs))
|
101 |
+
|
102 |
+
|
103 |
+
highpass_biquad = apply_biquad(highpass_biquad_coef)
|
104 |
+
|
105 |
+
|
106 |
+
def lowpass_biquad_coef(
|
107 |
+
sample_rate: int,
|
108 |
+
cutoff_freq: torch.Tensor,
|
109 |
+
Q: torch.Tensor,
|
110 |
+
):
|
111 |
+
w0 = 2 * torch.pi * cutoff_freq / sample_rate
|
112 |
+
alpha = torch.sin(w0) / 2 / Q
|
113 |
+
|
114 |
+
b0 = (1 - torch.cos(w0)) / 2
|
115 |
+
b1 = 1 - torch.cos(w0)
|
116 |
+
b2 = b0
|
117 |
+
a0 = 1 + alpha
|
118 |
+
a1 = -2 * torch.cos(w0)
|
119 |
+
a2 = 1 - alpha
|
120 |
+
return b0, b1, b2, a0, a1, a2
|
121 |
+
|
122 |
+
|
123 |
+
def equalizer_biquad_coef(
|
124 |
+
sample_rate: int,
|
125 |
+
center_freq: torch.Tensor,
|
126 |
+
gain: torch.Tensor,
|
127 |
+
Q: torch.Tensor,
|
128 |
+
):
|
129 |
+
|
130 |
+
w0 = 2 * torch.pi * center_freq / sample_rate
|
131 |
+
A = torch.exp(gain / 40.0 * math.log(10))
|
132 |
+
alpha = torch.sin(w0) / 2 / Q
|
133 |
+
|
134 |
+
b0 = 1 + alpha * A
|
135 |
+
b1 = -2 * torch.cos(w0)
|
136 |
+
b2 = 1 - alpha * A
|
137 |
+
|
138 |
+
a0 = 1 + alpha / A
|
139 |
+
a1 = -2 * torch.cos(w0)
|
140 |
+
a2 = 1 - alpha / A
|
141 |
+
return b0, b1, b2, a0, a1, a2
|
142 |
+
|
143 |
+
|
144 |
+
def lowshelf_biquad_coef(
|
145 |
+
sample_rate: int,
|
146 |
+
cutoff_freq: torch.Tensor,
|
147 |
+
gain: torch.Tensor,
|
148 |
+
Q: torch.Tensor,
|
149 |
+
):
|
150 |
+
|
151 |
+
w0 = 2 * torch.pi * cutoff_freq / sample_rate
|
152 |
+
A = torch.exp(gain / 40.0 * math.log(10))
|
153 |
+
alpha = torch.sin(w0) / 2 / Q
|
154 |
+
cosw0 = torch.cos(w0)
|
155 |
+
sqrtA = torch.sqrt(A)
|
156 |
+
|
157 |
+
b0 = A * (A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA)
|
158 |
+
b1 = 2 * A * (A - 1 - (A + 1) * cosw0)
|
159 |
+
b2 = A * (A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA)
|
160 |
+
|
161 |
+
a0 = A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA
|
162 |
+
a1 = -2 * (A - 1 + (A + 1) * cosw0)
|
163 |
+
a2 = A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA
|
164 |
+
|
165 |
+
return b0, b1, b2, a0, a1, a2
|
166 |
+
|
167 |
+
|
168 |
+
def highshelf_biquad_coef(
|
169 |
+
sample_rate: int,
|
170 |
+
cutoff_freq: torch.Tensor,
|
171 |
+
gain: torch.Tensor,
|
172 |
+
Q: torch.Tensor,
|
173 |
+
):
|
174 |
+
|
175 |
+
w0 = 2 * torch.pi * cutoff_freq / sample_rate
|
176 |
+
A = torch.exp(gain / 40.0 * math.log(10))
|
177 |
+
alpha = torch.sin(w0) / 2 / Q
|
178 |
+
cosw0 = torch.cos(w0)
|
179 |
+
sqrtA = torch.sqrt(A)
|
180 |
+
|
181 |
+
b0 = A * (A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA)
|
182 |
+
b1 = -2 * A * (A - 1 + (A + 1) * cosw0)
|
183 |
+
b2 = A * (A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA)
|
184 |
+
|
185 |
+
a0 = A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA
|
186 |
+
a1 = 2 * (A - 1 - (A + 1) * cosw0)
|
187 |
+
a2 = A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA
|
188 |
+
|
189 |
+
return b0, b1, b2, a0, a1, a2
|
190 |
+
|
191 |
+
|
192 |
+
highpass_biquad = apply_biquad(highpass_biquad_coef)
|
193 |
+
lowpass_biquad = apply_biquad(lowpass_biquad_coef)
|
194 |
+
highshelf_biquad = apply_biquad(highshelf_biquad_coef)
|
195 |
+
lowshelf_biquad = apply_biquad(lowshelf_biquad_coef)
|
196 |
+
equalizer_biquad = apply_biquad(equalizer_biquad_coef)
|
197 |
+
|
198 |
+
|
199 |
+
def avg(rms: torch.Tensor, avg_coef: torch.Tensor):
|
200 |
+
assert torch.all(avg_coef > 0) and torch.all(avg_coef <= 1)
|
201 |
+
|
202 |
+
h = rms * avg_coef
|
203 |
+
|
204 |
+
return sample_wise_lpc(
|
205 |
+
h,
|
206 |
+
(avg_coef - 1).broadcast_to(h.shape).unsqueeze(-1),
|
207 |
+
)
|
208 |
+
|
209 |
+
|
210 |
+
def avg_rms(audio: torch.Tensor, avg_coef) -> torch.Tensor:
|
211 |
+
return avg(audio.square().clamp_min(1e-8), avg_coef).sqrt()
|
212 |
+
|
213 |
+
|
214 |
+
def compressor_expander(
|
215 |
+
x: torch.Tensor,
|
216 |
+
avg_coef: Union[torch.Tensor, float],
|
217 |
+
cmp_th: Union[torch.Tensor, float],
|
218 |
+
cmp_ratio: Union[torch.Tensor, float],
|
219 |
+
exp_th: Union[torch.Tensor, float],
|
220 |
+
exp_ratio: Union[torch.Tensor, float],
|
221 |
+
at: Union[torch.Tensor, float],
|
222 |
+
rt: Union[torch.Tensor, float],
|
223 |
+
make_up: torch.Tensor,
|
224 |
+
lookahead_func=lambda x: x,
|
225 |
+
):
|
226 |
+
rms = avg_rms(x, avg_coef=avg_coef)
|
227 |
+
gain = compexp_gain(rms, cmp_th, cmp_ratio, exp_th, exp_ratio, at, rt)
|
228 |
+
gain = lookahead_func(gain)
|
229 |
+
return x * gain * db2amp(make_up).broadcast_to(x.shape[0], 1)
|
modules/fx.py
ADDED
@@ -0,0 +1,994 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.nn.utils.parametrize import register_parametrization
|
5 |
+
from torchcomp import ms2coef, coef2ms, db2amp
|
6 |
+
from torchaudio.transforms import Spectrogram, InverseSpectrogram
|
7 |
+
|
8 |
+
from typing import List, Tuple, Union, Any, Optional, Callable
|
9 |
+
import math
|
10 |
+
from torch_fftconv import fft_conv1d
|
11 |
+
from functools import reduce
|
12 |
+
|
13 |
+
from .functional import (
|
14 |
+
compressor_expander,
|
15 |
+
lowpass_biquad,
|
16 |
+
highpass_biquad,
|
17 |
+
equalizer_biquad,
|
18 |
+
lowshelf_biquad,
|
19 |
+
highshelf_biquad,
|
20 |
+
lowpass_biquad_coef,
|
21 |
+
highpass_biquad_coef,
|
22 |
+
highshelf_biquad_coef,
|
23 |
+
lowshelf_biquad_coef,
|
24 |
+
equalizer_biquad_coef,
|
25 |
+
)
|
26 |
+
from .utils import chain_functions
|
27 |
+
|
28 |
+
|
29 |
+
class Clip(nn.Module):
|
30 |
+
def __init__(self, max: Optional[float] = None, min: Optional[float] = None):
|
31 |
+
super().__init__()
|
32 |
+
self.min = min
|
33 |
+
self.max = max
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
if self.min is not None:
|
37 |
+
x = torch.clip(x, min=self.min)
|
38 |
+
if self.max is not None:
|
39 |
+
x = torch.clip(x, max=self.max)
|
40 |
+
return x
|
41 |
+
|
42 |
+
|
43 |
+
def clip_delay_eq_Q(m: nn.Module, Q: float):
|
44 |
+
if isinstance(m, Delay) and isinstance(m.eq, LowPass):
|
45 |
+
register_parametrization(m.eq.params, "Q", Clip(max=Q))
|
46 |
+
return m
|
47 |
+
|
48 |
+
|
49 |
+
float2param = lambda x: nn.Parameter(
|
50 |
+
torch.tensor(x, dtype=torch.float32) if not isinstance(x, torch.Tensor) else x
|
51 |
+
)
|
52 |
+
|
53 |
+
STEREO_NORM = math.sqrt(2)
|
54 |
+
|
55 |
+
|
56 |
+
def broadcast2stereo(m, args):
|
57 |
+
x, *_ = args
|
58 |
+
return x.expand(-1, 2, -1) if x.shape[1] == 1 else x
|
59 |
+
|
60 |
+
|
61 |
+
hadamard = lambda x: torch.stack([x.sum(1), x[:, 0] - x[:, 1]], 1) / STEREO_NORM
|
62 |
+
|
63 |
+
|
64 |
+
class Hadamard(nn.Module):
|
65 |
+
def forward(self, x):
|
66 |
+
return hadamard(x)
|
67 |
+
|
68 |
+
|
69 |
+
class FX(nn.Module):
|
70 |
+
def __init__(self, **kwargs) -> None:
|
71 |
+
super().__init__()
|
72 |
+
|
73 |
+
self.params = nn.ParameterDict({k: float2param(v) for k, v in kwargs.items()})
|
74 |
+
|
75 |
+
|
76 |
+
class SmoothingCoef(nn.Module):
|
77 |
+
def forward(self, x):
|
78 |
+
return x.sigmoid()
|
79 |
+
|
80 |
+
def right_inverse(self, y):
|
81 |
+
return (y / (1 - y)).log()
|
82 |
+
|
83 |
+
|
84 |
+
class CompRatio(nn.Module):
|
85 |
+
def forward(self, x):
|
86 |
+
return x.exp() + 1
|
87 |
+
|
88 |
+
def right_inverse(self, y):
|
89 |
+
return torch.log(y - 1)
|
90 |
+
|
91 |
+
|
92 |
+
class MinMax(nn.Module):
|
93 |
+
def __init__(self, min=0.0, max: Union[float, torch.Tensor] = 1.0):
|
94 |
+
super().__init__()
|
95 |
+
if isinstance(min, torch.Tensor):
|
96 |
+
self.register_buffer("min", min, persistent=False)
|
97 |
+
else:
|
98 |
+
self.min = min
|
99 |
+
|
100 |
+
if isinstance(max, torch.Tensor):
|
101 |
+
self.register_buffer("max", max, persistent=False)
|
102 |
+
else:
|
103 |
+
self.max = max
|
104 |
+
|
105 |
+
self._m = SmoothingCoef()
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
return self._m(x) * (self.max - self.min) + self.min
|
109 |
+
|
110 |
+
def right_inverse(self, y):
|
111 |
+
return self._m.right_inverse((y - self.min) / (self.max - self.min))
|
112 |
+
|
113 |
+
|
114 |
+
class WrappedPositive(nn.Module):
|
115 |
+
def __init__(self, period):
|
116 |
+
super().__init__()
|
117 |
+
self.period = period
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
return x.abs() % self.period
|
121 |
+
|
122 |
+
def right_inverse(self, y):
|
123 |
+
return y
|
124 |
+
|
125 |
+
|
126 |
+
class CompressorExpander(FX):
|
127 |
+
cmp_ratio_min: float = 1
|
128 |
+
cmp_ratio_max: float = 20
|
129 |
+
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
sr: int,
|
133 |
+
cmp_ratio: float = 2.0,
|
134 |
+
exp_ratio: float = 0.5,
|
135 |
+
at_ms: float = 50.0,
|
136 |
+
rt_ms: float = 50.0,
|
137 |
+
avg_coef: float = 0.3,
|
138 |
+
cmp_th: float = -18.0,
|
139 |
+
exp_th: float = -54.0,
|
140 |
+
make_up: float = 0.0,
|
141 |
+
delay: int = 0,
|
142 |
+
lookahead: bool = False,
|
143 |
+
max_lookahead: float = 15.0,
|
144 |
+
):
|
145 |
+
super().__init__(
|
146 |
+
cmp_th=cmp_th,
|
147 |
+
exp_th=exp_th,
|
148 |
+
make_up=make_up,
|
149 |
+
avg_coef=avg_coef,
|
150 |
+
cmp_ratio=cmp_ratio,
|
151 |
+
exp_ratio=exp_ratio,
|
152 |
+
)
|
153 |
+
# deprecated, please use lookahead instead
|
154 |
+
self.delay = delay
|
155 |
+
self.sr = sr
|
156 |
+
|
157 |
+
self.params["at"] = nn.Parameter(ms2coef(torch.tensor(at_ms), sr))
|
158 |
+
self.params["rt"] = nn.Parameter(ms2coef(torch.tensor(rt_ms), sr))
|
159 |
+
|
160 |
+
if lookahead:
|
161 |
+
self.params["lookahead"] = nn.Parameter(torch.ones(1) / sr * 1000)
|
162 |
+
register_parametrization(
|
163 |
+
self.params, "lookahead", WrappedPositive(max_lookahead)
|
164 |
+
)
|
165 |
+
sinc_length = int(sr * (max_lookahead + 1) * 0.001) + 1
|
166 |
+
left_pad_size = int(sr * 0.001)
|
167 |
+
self._pad_size = (left_pad_size, sinc_length - left_pad_size - 1)
|
168 |
+
self.register_buffer(
|
169 |
+
"_arange",
|
170 |
+
torch.arange(sinc_length) - left_pad_size,
|
171 |
+
persistent=False,
|
172 |
+
)
|
173 |
+
self.lookahead = lookahead
|
174 |
+
|
175 |
+
register_parametrization(self.params, "at", SmoothingCoef())
|
176 |
+
register_parametrization(self.params, "rt", SmoothingCoef())
|
177 |
+
register_parametrization(self.params, "avg_coef", SmoothingCoef())
|
178 |
+
register_parametrization(
|
179 |
+
self.params, "cmp_ratio", MinMax(self.cmp_ratio_min, self.cmp_ratio_max)
|
180 |
+
)
|
181 |
+
register_parametrization(self.params, "exp_ratio", SmoothingCoef())
|
182 |
+
|
183 |
+
def extra_repr(self) -> str:
|
184 |
+
with torch.no_grad():
|
185 |
+
s = (
|
186 |
+
f"attack: {coef2ms(self.params.at, self.sr).item()} (ms)\n"
|
187 |
+
f"release: {coef2ms(self.params.rt, self.sr).item()} (ms)\n"
|
188 |
+
f"avg_coef: {self.params.avg_coef.item()}\n"
|
189 |
+
f"compressor_ratio: {self.params.cmp_ratio.item()}\n"
|
190 |
+
f"expander_ratio: {self.params.exp_ratio.item()}\n"
|
191 |
+
f"compressor_threshold: {self.params.cmp_th.item()} (dB)\n"
|
192 |
+
f"expander_threshold: {self.params.exp_th.item()} (dB)\n"
|
193 |
+
f"make_up: {self.params.make_up.item()} (dB)"
|
194 |
+
)
|
195 |
+
if self.lookahead:
|
196 |
+
s += f"\nlookahead: {self.params.lookahead.item()} (ms)"
|
197 |
+
return s
|
198 |
+
|
199 |
+
def forward(self, x):
|
200 |
+
if self.lookahead:
|
201 |
+
lookahead_in_samples = self.params.lookahead * 0.001 * self.sr
|
202 |
+
sinc_filter = torch.sinc(self._arange - lookahead_in_samples)
|
203 |
+
lookahead_func = lambda gain: F.conv1d(
|
204 |
+
F.pad(
|
205 |
+
gain.view(-1, 1, gain.size(-1)), self._pad_size, mode="replicate"
|
206 |
+
),
|
207 |
+
sinc_filter[None, None, :],
|
208 |
+
).view(*gain.shape)
|
209 |
+
else:
|
210 |
+
lookahead_func = lambda x: x
|
211 |
+
|
212 |
+
return compressor_expander(
|
213 |
+
x.reshape(-1, x.shape[-1]),
|
214 |
+
lookahead_func=lookahead_func,
|
215 |
+
**{k: v for k, v in self.params.items() if k != "lookahead"},
|
216 |
+
).view(*x.shape)
|
217 |
+
|
218 |
+
|
219 |
+
class Panning(FX):
|
220 |
+
def __init__(self, pan: float = 0.0):
|
221 |
+
assert pan <= 100 and pan >= -100
|
222 |
+
super().__init__(pan=(pan + 100) / 200)
|
223 |
+
|
224 |
+
register_parametrization(self.params, "pan", SmoothingCoef())
|
225 |
+
|
226 |
+
self.register_forward_pre_hook(broadcast2stereo)
|
227 |
+
|
228 |
+
def extra_repr(self) -> str:
|
229 |
+
with torch.no_grad():
|
230 |
+
s = f"pan: {self.params.pan.item() * 200 - 100}"
|
231 |
+
return s
|
232 |
+
|
233 |
+
def forward(self, x: torch.Tensor):
|
234 |
+
angle = self.params.pan.view(1) * torch.pi * 0.5
|
235 |
+
amp = torch.concat([angle.cos(), angle.sin()]).view(2, 1) * STEREO_NORM
|
236 |
+
return x * amp
|
237 |
+
|
238 |
+
|
239 |
+
class StereoWidth(Panning):
|
240 |
+
def forward(self, x: torch.Tensor):
|
241 |
+
return chain_functions(hadamard, super().forward, hadamard)(x)
|
242 |
+
|
243 |
+
|
244 |
+
class ImpulseResponse(nn.Module):
|
245 |
+
def forward(self, h):
|
246 |
+
return torch.cat([torch.ones_like(h[..., :1]), h], dim=-1)
|
247 |
+
|
248 |
+
|
249 |
+
class FIR(FX):
|
250 |
+
def __init__(
|
251 |
+
self,
|
252 |
+
length: int,
|
253 |
+
channels: int = 2,
|
254 |
+
conv_method: str = "direct",
|
255 |
+
):
|
256 |
+
super().__init__(kernel=torch.zeros(channels, length - 1))
|
257 |
+
self._padding = length - 1
|
258 |
+
self.channels = channels
|
259 |
+
|
260 |
+
match conv_method:
|
261 |
+
case "direct":
|
262 |
+
self.conv_func = F.conv1d
|
263 |
+
case "fft":
|
264 |
+
self.conv_func = fft_conv1d
|
265 |
+
case _:
|
266 |
+
raise ValueError(f"Unknown conv_method: {conv_method}")
|
267 |
+
|
268 |
+
if channels == 2:
|
269 |
+
self.register_forward_pre_hook(broadcast2stereo)
|
270 |
+
|
271 |
+
def forward(self, x: torch.Tensor):
|
272 |
+
zero_padded = F.pad(x[..., :-1], (self._padding, 0), "constant", 0)
|
273 |
+
return x + self.conv_func(
|
274 |
+
zero_padded, self.params.kernel.flip(1).unsqueeze(1), groups=self.channels
|
275 |
+
)
|
276 |
+
|
277 |
+
|
278 |
+
class QFactor(nn.Module):
|
279 |
+
def forward(self, x):
|
280 |
+
return x.exp()
|
281 |
+
|
282 |
+
def right_inverse(self, y):
|
283 |
+
return y.log()
|
284 |
+
|
285 |
+
|
286 |
+
class LowPass(FX):
|
287 |
+
def __init__(
|
288 |
+
self,
|
289 |
+
sr: int,
|
290 |
+
freq: float = 17500.0,
|
291 |
+
Q: float = 0.707,
|
292 |
+
min_freq: float = 200.0,
|
293 |
+
max_freq: float = 18000,
|
294 |
+
min_Q: float = 0.5,
|
295 |
+
max_Q: float = 10.0,
|
296 |
+
):
|
297 |
+
super().__init__(freq=freq, Q=Q)
|
298 |
+
|
299 |
+
self.sr = sr
|
300 |
+
register_parametrization(self.params, "freq", MinMax(min_freq, max_freq))
|
301 |
+
register_parametrization(self.params, "Q", MinMax(min_Q, max_Q))
|
302 |
+
|
303 |
+
def forward(self, x):
|
304 |
+
return lowpass_biquad(
|
305 |
+
x, sample_rate=self.sr, cutoff_freq=self.params.freq, Q=self.params.Q
|
306 |
+
)
|
307 |
+
|
308 |
+
def extra_repr(self) -> str:
|
309 |
+
with torch.no_grad():
|
310 |
+
s = f"freq: {self.params.freq.item():.4f}, Q: {self.params.Q.item():.4f}"
|
311 |
+
return s
|
312 |
+
|
313 |
+
|
314 |
+
class HighPass(LowPass):
|
315 |
+
def __init__(
|
316 |
+
self,
|
317 |
+
*args,
|
318 |
+
freq: float = 200.0,
|
319 |
+
min_freq: float = 16.0,
|
320 |
+
max_freq: float = 5300.0,
|
321 |
+
**kwargs,
|
322 |
+
):
|
323 |
+
super().__init__(
|
324 |
+
*args, freq=freq, min_freq=min_freq, max_freq=max_freq, **kwargs
|
325 |
+
)
|
326 |
+
|
327 |
+
def forward(self, x):
|
328 |
+
return highpass_biquad(
|
329 |
+
x, sample_rate=self.sr, cutoff_freq=self.params.freq, Q=self.params.Q
|
330 |
+
)
|
331 |
+
|
332 |
+
|
333 |
+
class Peak(FX):
|
334 |
+
def __init__(
|
335 |
+
self,
|
336 |
+
sr: int,
|
337 |
+
gain: float = 0.0,
|
338 |
+
freq: float = 2000.0,
|
339 |
+
Q: float = 0.707,
|
340 |
+
min_freq: float = 33.0,
|
341 |
+
max_freq: float = 17500.0,
|
342 |
+
min_Q: float = 0.2,
|
343 |
+
max_Q: float = 20,
|
344 |
+
):
|
345 |
+
super().__init__(freq=freq, Q=Q, gain=gain)
|
346 |
+
|
347 |
+
self.sr = sr
|
348 |
+
|
349 |
+
register_parametrization(self.params, "freq", MinMax(min_freq, max_freq))
|
350 |
+
register_parametrization(self.params, "Q", MinMax(min_Q, max_Q))
|
351 |
+
|
352 |
+
def forward(self, x):
|
353 |
+
return equalizer_biquad(
|
354 |
+
x,
|
355 |
+
sample_rate=self.sr,
|
356 |
+
center_freq=self.params.freq,
|
357 |
+
Q=self.params.Q,
|
358 |
+
gain=self.params.gain,
|
359 |
+
)
|
360 |
+
|
361 |
+
def extra_repr(self) -> str:
|
362 |
+
with torch.no_grad():
|
363 |
+
s = f"freq: {self.params.freq.item():.4f}, gain: {self.params.gain.item():.4f}, Q: {self.params.Q.item():.4f}"
|
364 |
+
return s
|
365 |
+
|
366 |
+
|
367 |
+
class LowShelf(FX):
|
368 |
+
def __init__(
|
369 |
+
self,
|
370 |
+
sr: int,
|
371 |
+
gain: float = 0.0,
|
372 |
+
freq: float = 115.0,
|
373 |
+
min_freq: float = 30,
|
374 |
+
max_freq: float = 200,
|
375 |
+
):
|
376 |
+
super().__init__(freq=freq, gain=gain)
|
377 |
+
|
378 |
+
self.sr = sr
|
379 |
+
register_parametrization(self.params, "freq", MinMax(min_freq, max_freq))
|
380 |
+
|
381 |
+
self.register_buffer("Q", torch.tensor(0.707), persistent=False)
|
382 |
+
|
383 |
+
def forward(self, x):
|
384 |
+
return lowshelf_biquad(
|
385 |
+
x,
|
386 |
+
sample_rate=self.sr,
|
387 |
+
cutoff_freq=self.params.freq,
|
388 |
+
gain=self.params.gain,
|
389 |
+
Q=self.Q,
|
390 |
+
)
|
391 |
+
|
392 |
+
def extra_repr(self) -> str:
|
393 |
+
with torch.no_grad():
|
394 |
+
s = f"freq: {self.params.freq.item():.4f}, gain: {self.params.gain.item():.4f}"
|
395 |
+
return s
|
396 |
+
|
397 |
+
|
398 |
+
class HighShelf(LowShelf):
|
399 |
+
def __init__(
|
400 |
+
self,
|
401 |
+
*args,
|
402 |
+
freq: float = 4525,
|
403 |
+
min_freq: float = 750,
|
404 |
+
max_freq: float = 8300,
|
405 |
+
**kwargs,
|
406 |
+
):
|
407 |
+
super().__init__(
|
408 |
+
*args, freq=freq, min_freq=min_freq, max_freq=max_freq, **kwargs
|
409 |
+
)
|
410 |
+
|
411 |
+
def forward(self, x):
|
412 |
+
return highshelf_biquad(
|
413 |
+
x,
|
414 |
+
sample_rate=self.sr,
|
415 |
+
cutoff_freq=self.params.freq,
|
416 |
+
gain=self.params.gain,
|
417 |
+
Q=self.Q,
|
418 |
+
)
|
419 |
+
|
420 |
+
|
421 |
+
def module2coeffs(
|
422 |
+
m: Union[LowPass, HighPass, Peak, LowShelf, HighShelf],
|
423 |
+
) -> Tuple[
|
424 |
+
torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor
|
425 |
+
]:
|
426 |
+
match m:
|
427 |
+
case LowPass():
|
428 |
+
return lowpass_biquad_coef(m.sr, m.params.freq, m.params.Q)
|
429 |
+
case HighPass():
|
430 |
+
return highpass_biquad_coef(m.sr, m.params.freq, m.params.Q)
|
431 |
+
case Peak():
|
432 |
+
return equalizer_biquad_coef(m.sr, m.params.freq, m.params.Q, m.params.gain)
|
433 |
+
case LowShelf():
|
434 |
+
return lowshelf_biquad_coef(m.sr, m.params.freq, m.params.gain, m.Q)
|
435 |
+
case HighShelf():
|
436 |
+
return highshelf_biquad_coef(m.sr, m.params.freq, m.params.gain, m.Q)
|
437 |
+
case _:
|
438 |
+
raise ValueError(f"Unknown module: {m}")
|
439 |
+
|
440 |
+
|
441 |
+
class AlwaysNegative(nn.Module):
|
442 |
+
def forward(self, x):
|
443 |
+
return -F.softplus(x)
|
444 |
+
|
445 |
+
def right_inverse(self, y):
|
446 |
+
return torch.log(y.neg().exp() - 1)
|
447 |
+
|
448 |
+
|
449 |
+
class Reverb(FX):
|
450 |
+
def __init__(self, ir_len=60000, n_fft=384, hop_length=192, downsample_factor=1):
|
451 |
+
super().__init__(
|
452 |
+
log_mag=torch.full((2, n_fft // downsample_factor // 2 + 1), -1.0),
|
453 |
+
log_mag_delta=torch.full((2, n_fft // downsample_factor // 2 + 1), -5.0),
|
454 |
+
)
|
455 |
+
|
456 |
+
self.steps = (ir_len - n_fft + hop_length - 1) // hop_length
|
457 |
+
self.n_fft = n_fft
|
458 |
+
self.hop_length = hop_length
|
459 |
+
self.downsample_factor = downsample_factor
|
460 |
+
|
461 |
+
self._noise_angle = nn.Parameter(
|
462 |
+
torch.rand(2, n_fft // 2 + 1, self.steps) * 2 * torch.pi
|
463 |
+
)
|
464 |
+
|
465 |
+
self.register_buffer(
|
466 |
+
"_arange", torch.arange(self.steps, dtype=torch.float32), persistent=False
|
467 |
+
)
|
468 |
+
self.spec_forward = Spectrogram(n_fft, hop_length=hop_length, power=None)
|
469 |
+
self.spec_inverse = InverseSpectrogram(
|
470 |
+
n_fft,
|
471 |
+
hop_length=hop_length,
|
472 |
+
)
|
473 |
+
|
474 |
+
register_parametrization(self.params, "log_mag", AlwaysNegative())
|
475 |
+
register_parametrization(self.params, "log_mag_delta", AlwaysNegative())
|
476 |
+
|
477 |
+
self.register_forward_pre_hook(broadcast2stereo)
|
478 |
+
|
479 |
+
def forward(self, x):
|
480 |
+
h = x
|
481 |
+
H = self.spec_forward(h)
|
482 |
+
|
483 |
+
log_mag = self.params.log_mag
|
484 |
+
log_mag_delta = self.params.log_mag_delta
|
485 |
+
|
486 |
+
if self.downsample_factor > 1:
|
487 |
+
log_mag = F.interpolate(
|
488 |
+
log_mag.unsqueeze(0),
|
489 |
+
size=self._noise_angle.size(1),
|
490 |
+
align_corners=True,
|
491 |
+
mode="linear",
|
492 |
+
).squeeze(0)
|
493 |
+
log_mag_delta = F.interpolate(
|
494 |
+
log_mag_delta.unsqueeze(0),
|
495 |
+
size=self._noise_angle.size(1),
|
496 |
+
align_corners=True,
|
497 |
+
mode="linear",
|
498 |
+
).squeeze(0)
|
499 |
+
|
500 |
+
ir_2d = torch.exp(
|
501 |
+
log_mag.unsqueeze(-1)
|
502 |
+
+ log_mag_delta.unsqueeze(-1) * self._arange
|
503 |
+
+ self._noise_angle * 1j
|
504 |
+
)
|
505 |
+
|
506 |
+
padded_H = F.pad(H.flatten(1, 2), (ir_2d.shape[-1] - 1, 0))
|
507 |
+
|
508 |
+
H = F.conv1d(
|
509 |
+
padded_H,
|
510 |
+
hadamard(ir_2d.unsqueeze(0)).flatten(1, 2).flip(-1).transpose(0, 1),
|
511 |
+
groups=H.shape[2] * 2,
|
512 |
+
).view(*H.shape)
|
513 |
+
|
514 |
+
h = self.spec_inverse(H)
|
515 |
+
return h
|
516 |
+
|
517 |
+
|
518 |
+
class Delay(FX):
|
519 |
+
min_delay: float = 100
|
520 |
+
max_delay: float = 1000
|
521 |
+
|
522 |
+
def __init__(
|
523 |
+
self,
|
524 |
+
sr: int,
|
525 |
+
delay=200.0,
|
526 |
+
feedback=0.1,
|
527 |
+
gain=0.1,
|
528 |
+
ir_duration: float = 2,
|
529 |
+
eq: Optional[nn.Module] = None,
|
530 |
+
recursive_eq=False,
|
531 |
+
):
|
532 |
+
super().__init__(
|
533 |
+
delay=delay,
|
534 |
+
feedback=feedback,
|
535 |
+
gain=gain,
|
536 |
+
)
|
537 |
+
self.sr = sr
|
538 |
+
self.ir_length = int(sr * max(ir_duration, self.max_delay * 0.002))
|
539 |
+
|
540 |
+
register_parametrization(
|
541 |
+
self.params, "delay", MinMax(self.min_delay, self.max_delay)
|
542 |
+
)
|
543 |
+
register_parametrization(self.params, "feedback", SmoothingCoef())
|
544 |
+
register_parametrization(self.params, "gain", SmoothingCoef())
|
545 |
+
|
546 |
+
self.eq = eq
|
547 |
+
self.recursive_eq = recursive_eq
|
548 |
+
|
549 |
+
self.register_buffer(
|
550 |
+
"_arange", torch.arange(self.ir_length, dtype=torch.float32)
|
551 |
+
)
|
552 |
+
|
553 |
+
self.odd_pan = Panning(0)
|
554 |
+
self.even_pan = Panning(0)
|
555 |
+
|
556 |
+
def forward(self, x):
|
557 |
+
assert x.size(1) == 1, x.size()
|
558 |
+
delay_in_samples = self.sr * self.params.delay * 0.001
|
559 |
+
num_delays = self.ir_length // int(delay_in_samples.item() + 1)
|
560 |
+
series = torch.arange(1, num_delays + 1, device=x.device)
|
561 |
+
decays = self.params.feedback ** (series - 1)
|
562 |
+
|
563 |
+
if self.recursive_eq and self.eq is not None:
|
564 |
+
sinc_index = self._arange - delay_in_samples
|
565 |
+
single_sinc_filter = torch.sinc(sinc_index)
|
566 |
+
eq_sinc_filter = self.eq(single_sinc_filter)
|
567 |
+
H = torch.fft.rfft(eq_sinc_filter)
|
568 |
+
H_powered = torch.polar(
|
569 |
+
H.abs() ** series.unsqueeze(-1), H.angle() * series.unsqueeze(-1)
|
570 |
+
)
|
571 |
+
sinc_filters = torch.fft.irfft(H_powered, n=self.ir_length)
|
572 |
+
else:
|
573 |
+
delays_in_samples = delay_in_samples * series
|
574 |
+
sinc_indexes = self._arange - delays_in_samples.unsqueeze(-1)
|
575 |
+
sinc_filters = torch.sinc(sinc_indexes)
|
576 |
+
|
577 |
+
decayed_sinc_filters = sinc_filters * decays.unsqueeze(-1)
|
578 |
+
return self._filter(x, decayed_sinc_filters)
|
579 |
+
|
580 |
+
def _filter(self, x: torch.Tensor, decayed_sinc_filters: torch.Tensor):
|
581 |
+
odd_delay_filters = torch.sum(decayed_sinc_filters[::2], 0)
|
582 |
+
even_delay_filters = torch.sum(decayed_sinc_filters[1::2], 0)
|
583 |
+
stacked_filters = torch.stack([odd_delay_filters, even_delay_filters])
|
584 |
+
|
585 |
+
if self.eq is not None and not self.recursive_eq:
|
586 |
+
stacked_filters = self.eq(stacked_filters)
|
587 |
+
|
588 |
+
gained_odd_even_filters = stacked_filters * self.params.gain
|
589 |
+
padded_x = F.pad(x, (gained_odd_even_filters.size(-1) - 1, 0))
|
590 |
+
conv1d = F.conv1d if x.size(-1) > 44100 * 20 else fft_conv1d
|
591 |
+
return sum(
|
592 |
+
[
|
593 |
+
panner(s)
|
594 |
+
for panner, s in zip(
|
595 |
+
[self.odd_pan, self.even_pan],
|
596 |
+
# fft_conv1d(
|
597 |
+
conv1d(
|
598 |
+
padded_x,
|
599 |
+
gained_odd_even_filters.flip(-1).unsqueeze(1),
|
600 |
+
).chunk(2, 1),
|
601 |
+
)
|
602 |
+
]
|
603 |
+
)
|
604 |
+
|
605 |
+
def extra_repr(self) -> str:
|
606 |
+
with torch.no_grad():
|
607 |
+
s = (
|
608 |
+
f"delay: {self.sr * self.params.delay.item() * 0.001} (samples)\n"
|
609 |
+
f"feedback: {self.params.feedback.item()}\n"
|
610 |
+
f"gain: {self.params.gain.item()}"
|
611 |
+
)
|
612 |
+
return s
|
613 |
+
|
614 |
+
|
615 |
+
class SurrogateDelay(Delay):
|
616 |
+
def __init__(self, *args, dropout=0.5, straight_through=False, **kwargs):
|
617 |
+
super().__init__(*args, **kwargs)
|
618 |
+
|
619 |
+
self.dropout = dropout
|
620 |
+
self.straight_through = straight_through
|
621 |
+
self.log_damp = nn.Parameter(torch.ones(1) * -0.01)
|
622 |
+
register_parametrization(self, "log_damp", AlwaysNegative())
|
623 |
+
|
624 |
+
def forward(self, x):
|
625 |
+
assert x.size(1) == 1, x.size()
|
626 |
+
if not self.training:
|
627 |
+
return super().forward(x)
|
628 |
+
|
629 |
+
log_damp = self.log_damp
|
630 |
+
delay_in_samples = self.sr * self.params.delay * 0.001
|
631 |
+
num_delays = self.ir_length // int(delay_in_samples.item() + 1)
|
632 |
+
series = torch.arange(1, num_delays + 1, device=x.device)
|
633 |
+
decays = self.params.feedback ** (series - 1)
|
634 |
+
|
635 |
+
if self.recursive_eq and self.eq is not None:
|
636 |
+
exp_factor = self._arange[: self.ir_length // 2 + 1]
|
637 |
+
damped_exp = torch.exp(
|
638 |
+
log_damp * exp_factor
|
639 |
+
- 1j * delay_in_samples / self.ir_length * 2 * torch.pi * exp_factor
|
640 |
+
)
|
641 |
+
sinc_filter = torch.fft.irfft(damped_exp, n=self.ir_length)
|
642 |
+
if self.straight_through:
|
643 |
+
sinc_index = self._arange - delay_in_samples
|
644 |
+
hard_sinc_filter = torch.sinc(sinc_index)
|
645 |
+
sinc_filter = sinc_filter + (hard_sinc_filter - sinc_filter).detach()
|
646 |
+
|
647 |
+
eq_sinc_filter = self.eq(sinc_filter)
|
648 |
+
H = torch.fft.rfft(eq_sinc_filter)
|
649 |
+
|
650 |
+
# use polar form to avoid NaN
|
651 |
+
H_powered = torch.polar(
|
652 |
+
H.abs() ** series.unsqueeze(-1), H.angle() * series.unsqueeze(-1)
|
653 |
+
)
|
654 |
+
sinc_filters = torch.fft.irfft(H_powered, n=self.ir_length)
|
655 |
+
else:
|
656 |
+
exp_factors = series.unsqueeze(-1) * self._arange[: self.ir_length // 2 + 1]
|
657 |
+
damped_exps = torch.exp(
|
658 |
+
log_damp * exp_factors
|
659 |
+
- 1j * delay_in_samples / self.ir_length * 2 * torch.pi * exp_factors
|
660 |
+
)
|
661 |
+
sinc_filters = torch.fft.irfft(damped_exps, n=self.ir_length)
|
662 |
+
if self.straight_through:
|
663 |
+
delays_in_samples = delay_in_samples * series
|
664 |
+
sinc_indexes = self._arange - delays_in_samples.unsqueeze(-1)
|
665 |
+
hard_sinc_filters = torch.sinc(sinc_indexes)
|
666 |
+
sinc_filters = (
|
667 |
+
sinc_filters + (hard_sinc_filters - sinc_filters).detach()
|
668 |
+
)
|
669 |
+
|
670 |
+
decayed_sinc_filters = sinc_filters * decays.unsqueeze(-1)
|
671 |
+
|
672 |
+
dropout_mask = torch.rand(x.size(0), device=x.device) < self.dropout
|
673 |
+
if not torch.any(dropout_mask):
|
674 |
+
return self._filter(x, decayed_sinc_filters)
|
675 |
+
elif torch.all(dropout_mask):
|
676 |
+
return super().forward(x)
|
677 |
+
|
678 |
+
out = torch.zeros((x.size(0), 2, x.size(2)), device=x.device)
|
679 |
+
out[~dropout_mask] = self._filter(x[~dropout_mask], decayed_sinc_filters)
|
680 |
+
out[dropout_mask] = super().forward(x[dropout_mask])
|
681 |
+
return out
|
682 |
+
|
683 |
+
def extra_repr(self) -> str:
|
684 |
+
with torch.no_grad():
|
685 |
+
return super().extra_repr() + f"\ndamp: {self.log_damp.exp().item()}"
|
686 |
+
|
687 |
+
|
688 |
+
class FSDelay(FX):
|
689 |
+
def __init__(
|
690 |
+
self,
|
691 |
+
sr: int,
|
692 |
+
delay=200.0,
|
693 |
+
feedback=0.1,
|
694 |
+
gain=0.1,
|
695 |
+
ir_duration: float = 6,
|
696 |
+
eq: Optional[LowPass] = None,
|
697 |
+
recursive_eq=False,
|
698 |
+
):
|
699 |
+
super().__init__(
|
700 |
+
delay=delay,
|
701 |
+
feedback=feedback,
|
702 |
+
gain=gain,
|
703 |
+
)
|
704 |
+
self.sr = sr
|
705 |
+
self.ir_length = int(sr * max(ir_duration, Delay.max_delay * 0.002))
|
706 |
+
|
707 |
+
register_parametrization(
|
708 |
+
self.params, "delay", MinMax(Delay.min_delay, Delay.max_delay)
|
709 |
+
)
|
710 |
+
register_parametrization(self.params, "gain", SmoothingCoef())
|
711 |
+
|
712 |
+
T_60 = ir_duration * 0.75
|
713 |
+
max_delay_in_samples = sr * Delay.max_delay * 0.001
|
714 |
+
maximum_decay = db2amp(torch.tensor(-60 / sr / T_60 * max_delay_in_samples))
|
715 |
+
register_parametrization(self.params, "feedback", MinMax(0, maximum_decay))
|
716 |
+
|
717 |
+
self.eq = eq
|
718 |
+
self.recursive_eq = recursive_eq
|
719 |
+
|
720 |
+
self.odd_pan = Panning(0)
|
721 |
+
self.even_pan = Panning(0)
|
722 |
+
|
723 |
+
self.register_buffer(
|
724 |
+
"_arange", torch.arange(self.ir_length, dtype=torch.float32)
|
725 |
+
)
|
726 |
+
|
727 |
+
def _get_h(self):
|
728 |
+
freqs = self._arange[: self.ir_length // 2 + 1] / self.ir_length * 2 * torch.pi
|
729 |
+
delay_in_samples = self.sr * self.params.delay * 0.001
|
730 |
+
|
731 |
+
# construct it like a fdn
|
732 |
+
Dinv = torch.exp(1j * freqs * delay_in_samples)
|
733 |
+
Dinv2 = torch.exp(2j * freqs * delay_in_samples)
|
734 |
+
if self.recursive_eq and self.eq is not None:
|
735 |
+
b0, b1, b2, a0, a1, a2 = module2coeffs(self.eq)
|
736 |
+
z_inv = torch.exp(-1j * freqs)
|
737 |
+
z_inv2 = torch.exp(-2j * freqs)
|
738 |
+
eq_H = (b0 + b1 * z_inv + b2 * z_inv2) / (a0 + a1 * z_inv + a2 * z_inv2)
|
739 |
+
damp = eq_H * self.params.feedback
|
740 |
+
det = Dinv2 - damp * damp
|
741 |
+
else:
|
742 |
+
damp = torch.full_like(Dinv, self.params.feedback) + 0j
|
743 |
+
det = Dinv2 - self.params.feedback.square()
|
744 |
+
inv_Dinv_m_A = torch.stack([Dinv, damp], 0) / det
|
745 |
+
h = torch.fft.irfft(inv_Dinv_m_A, n=self.ir_length) * self.params.gain
|
746 |
+
|
747 |
+
if self.eq is not None and not self.recursive_eq:
|
748 |
+
h = self.eq(h)
|
749 |
+
return h
|
750 |
+
|
751 |
+
def forward(self, x):
|
752 |
+
assert x.size(1) == 1, x.size()
|
753 |
+
h = self._get_h()
|
754 |
+
|
755 |
+
padded_x = F.pad(x, (h.size(-1) - 1, 0))
|
756 |
+
conv1d = F.conv1d if x.size(-1) > 44100 * 20 else fft_conv1d
|
757 |
+
return sum(
|
758 |
+
[
|
759 |
+
panner(s)
|
760 |
+
for panner, s in zip(
|
761 |
+
[self.odd_pan, self.even_pan],
|
762 |
+
conv1d(
|
763 |
+
padded_x,
|
764 |
+
h.flip(-1).unsqueeze(1),
|
765 |
+
).chunk(2, 1),
|
766 |
+
)
|
767 |
+
]
|
768 |
+
)
|
769 |
+
|
770 |
+
def extra_repr(self) -> str:
|
771 |
+
with torch.no_grad():
|
772 |
+
s = (
|
773 |
+
f"delay: {self.sr * self.params.delay.item() * 0.001} (samples)\n"
|
774 |
+
f"feedback: {self.params.feedback.item()}\n"
|
775 |
+
f"gain: {self.params.gain.item()}"
|
776 |
+
)
|
777 |
+
return s
|
778 |
+
|
779 |
+
|
780 |
+
class FSSurrogateDelay(FSDelay):
|
781 |
+
def __init__(self, *args, straight_through=False, **kwargs):
|
782 |
+
super().__init__(*args, **kwargs)
|
783 |
+
|
784 |
+
self.straight_through = straight_through
|
785 |
+
self.log_damp = nn.Parameter(torch.ones(1) * -0.0001)
|
786 |
+
register_parametrization(self, "log_damp", AlwaysNegative())
|
787 |
+
|
788 |
+
def _get_h(self):
|
789 |
+
if not self.training:
|
790 |
+
return super()._get_h()
|
791 |
+
|
792 |
+
log_damp = self.log_damp
|
793 |
+
delay_in_samples = self.sr * self.params.delay * 0.001
|
794 |
+
|
795 |
+
exp_factor = self._arange[: self.ir_length // 2 + 1]
|
796 |
+
freqs = exp_factor / self.ir_length * 2 * torch.pi
|
797 |
+
D = torch.exp(log_damp * exp_factor - 1j * delay_in_samples * freqs)
|
798 |
+
D2 = torch.exp(log_damp * exp_factor * 2 - 2j * delay_in_samples * freqs)
|
799 |
+
|
800 |
+
if self.straight_through:
|
801 |
+
D_orig = torch.exp(-1j * delay_in_samples * freqs)
|
802 |
+
D2_orig = torch.exp(-2j * delay_in_samples * freqs)
|
803 |
+
D = torch.stack([D, D_orig], 0)
|
804 |
+
D2 = torch.stack([D2, D2_orig], 0)
|
805 |
+
|
806 |
+
if self.recursive_eq and self.eq is not None:
|
807 |
+
b0, b1, b2, a0, a1, a2 = module2coeffs(self.eq)
|
808 |
+
z_inv = torch.exp(-1j * freqs)
|
809 |
+
z_inv2 = torch.exp(-2j * freqs)
|
810 |
+
eq_H = (b0 + b1 * z_inv + b2 * z_inv2) / (a0 + a1 * z_inv + a2 * z_inv2)
|
811 |
+
damp = eq_H * self.params.feedback
|
812 |
+
odd_H = D / (1 - damp * damp * D2)
|
813 |
+
even_H = odd_H * D * damp
|
814 |
+
else:
|
815 |
+
damp = torch.full_like(D, self.params.feedback) + 0j
|
816 |
+
odd_H = D / (1 - self.params.feedback.square() * D2)
|
817 |
+
even_H = odd_H * D * self.params.feedback
|
818 |
+
|
819 |
+
inv_Dinv_m_A = torch.stack([odd_H, even_H], 0)
|
820 |
+
h = torch.fft.irfft(inv_Dinv_m_A, n=self.ir_length)
|
821 |
+
|
822 |
+
if self.straight_through:
|
823 |
+
damped_h, orig_h = h.unbind(1)
|
824 |
+
h = damped_h + (orig_h - damped_h).detach()
|
825 |
+
|
826 |
+
if self.eq is not None and not self.recursive_eq:
|
827 |
+
h = self.eq(h)
|
828 |
+
return h * self.params.gain
|
829 |
+
|
830 |
+
def extra_repr(self) -> str:
|
831 |
+
with torch.no_grad():
|
832 |
+
return super().extra_repr() + f"\ndamp: {self.log_damp.exp().item()}"
|
833 |
+
|
834 |
+
|
835 |
+
class SendFXsAndSum(FX):
|
836 |
+
def __init__(self, *args, cross_send=True, pan_direct=False):
|
837 |
+
super().__init__(
|
838 |
+
**(
|
839 |
+
{
|
840 |
+
f"sends_{i}": torch.full([len(args) - i - 1], 0.01)
|
841 |
+
for i in range(len(args) - 1)
|
842 |
+
}
|
843 |
+
if cross_send
|
844 |
+
else {}
|
845 |
+
)
|
846 |
+
)
|
847 |
+
self.effects = nn.ModuleList(args)
|
848 |
+
if pan_direct:
|
849 |
+
self.pan = Panning()
|
850 |
+
|
851 |
+
if cross_send:
|
852 |
+
for i in range(len(args) - 1):
|
853 |
+
register_parametrization(self.params, f"sends_{i}", SmoothingCoef())
|
854 |
+
|
855 |
+
def forward(self, x):
|
856 |
+
if hasattr(self, "pan"):
|
857 |
+
di = self.pan(x)
|
858 |
+
else:
|
859 |
+
di = x
|
860 |
+
|
861 |
+
if len(self.params) == 0:
|
862 |
+
return reduce(
|
863 |
+
lambda x, y: x[..., : y.shape[-1]] + y[..., : x.shape[-1]],
|
864 |
+
map(lambda f: f(x), self.effects),
|
865 |
+
di,
|
866 |
+
)
|
867 |
+
|
868 |
+
def f(states, ps):
|
869 |
+
x, cum_sends = states
|
870 |
+
m, send_gains = ps
|
871 |
+
h = m(cum_sends[0])
|
872 |
+
return (
|
873 |
+
x[..., : h.shape[-1]] + h[..., : x.shape[-1]],
|
874 |
+
(
|
875 |
+
None
|
876 |
+
if cum_sends.size(0) == 1
|
877 |
+
else cum_sends[1:, ..., : h.shape[-1]]
|
878 |
+
+ send_gains[:, None, None, None] * h[..., : cum_sends.shape[-1]]
|
879 |
+
),
|
880 |
+
)
|
881 |
+
|
882 |
+
return reduce(
|
883 |
+
f,
|
884 |
+
zip(
|
885 |
+
self.effects,
|
886 |
+
[self.params[f"sends_{i}"] for i in range(len(self.effects) - 1)]
|
887 |
+
+ [None],
|
888 |
+
),
|
889 |
+
(di, x.unsqueeze(0).expand(len(self.effects), -1, -1, -1)),
|
890 |
+
)[0]
|
891 |
+
|
892 |
+
|
893 |
+
class UniLossLess(nn.Module):
|
894 |
+
def forward(self, x):
|
895 |
+
tri = x.triu(1)
|
896 |
+
return torch.linalg.matrix_exp(tri - tri.T)
|
897 |
+
|
898 |
+
|
899 |
+
class FDN(FX):
|
900 |
+
max_delay = 100
|
901 |
+
|
902 |
+
def __init__(
|
903 |
+
self,
|
904 |
+
sr: int,
|
905 |
+
ir_duration: float = 1.0,
|
906 |
+
delays=(997, 1153, 1327, 1559, 1801, 2099),
|
907 |
+
trainable_delay=False,
|
908 |
+
num_decay_freq=1,
|
909 |
+
delay_independent_decay=False,
|
910 |
+
eq: Optional[nn.Module] = None,
|
911 |
+
):
|
912 |
+
# beta = torch.distributions.Beta(1.1, 6)
|
913 |
+
num_delays = len(delays)
|
914 |
+
super().__init__(
|
915 |
+
b=torch.ones(num_delays, 2) / num_delays,
|
916 |
+
c=torch.zeros(2, num_delays),
|
917 |
+
U=torch.randn(num_delays, num_delays) / num_delays**0.5,
|
918 |
+
gamma=torch.rand(
|
919 |
+
num_decay_freq, num_delays if not delay_independent_decay else 1
|
920 |
+
)
|
921 |
+
* 0.2
|
922 |
+
+ 0.4,
|
923 |
+
# delays=beta.sample((num_delays,)) * 64,
|
924 |
+
)
|
925 |
+
|
926 |
+
self.sr = sr
|
927 |
+
self.ir_length = int(sr * ir_duration)
|
928 |
+
|
929 |
+
# ir_duration = T_60
|
930 |
+
T_60 = ir_duration * 0.75
|
931 |
+
delays = torch.tensor(delays)
|
932 |
+
if delay_independent_decay:
|
933 |
+
gamma_max = db2amp(-60 / sr / T_60 * delays.min())
|
934 |
+
else:
|
935 |
+
gamma_max = db2amp(-60 / sr / T_60 * delays)
|
936 |
+
|
937 |
+
register_parametrization(self.params, "gamma", MinMax(0, gamma_max))
|
938 |
+
register_parametrization(self.params, "U", UniLossLess())
|
939 |
+
|
940 |
+
if not trainable_delay:
|
941 |
+
self.register_buffer(
|
942 |
+
"delays",
|
943 |
+
delays,
|
944 |
+
)
|
945 |
+
else:
|
946 |
+
self.params["delays"] = nn.Parameter(delays / sr * 1000)
|
947 |
+
register_parametrization(self.params, "delays", MinMax(0, self.max_delay))
|
948 |
+
|
949 |
+
self.register_forward_pre_hook(broadcast2stereo)
|
950 |
+
|
951 |
+
self.eq = eq
|
952 |
+
|
953 |
+
def forward(self, x):
|
954 |
+
conv1d = F.conv1d if x.size(-1) > 44100 * 20 else fft_conv1d
|
955 |
+
|
956 |
+
c = self.params.c + 0j
|
957 |
+
b = self.params.b + 0j
|
958 |
+
|
959 |
+
gamma = self.params.gamma
|
960 |
+
delays = self.delays if hasattr(self, "delays") else self.params.delays
|
961 |
+
|
962 |
+
if gamma.size(0) > 1:
|
963 |
+
gamma = F.interpolate(
|
964 |
+
gamma.T.unsqueeze(1),
|
965 |
+
size=self.ir_length // 2 + 1,
|
966 |
+
align_corners=True,
|
967 |
+
mode="linear",
|
968 |
+
).transpose(0, 2)
|
969 |
+
|
970 |
+
if gamma.size(2) == 1:
|
971 |
+
gamma = gamma ** (delays / delays.min())
|
972 |
+
|
973 |
+
A = self.params.U * gamma
|
974 |
+
|
975 |
+
freqs = (
|
976 |
+
torch.arange(self.ir_length // 2 + 1, device=x.device)
|
977 |
+
/ self.ir_length
|
978 |
+
* 2
|
979 |
+
* torch.pi
|
980 |
+
)
|
981 |
+
invD = torch.exp(1j * freqs[:, None] * delays)
|
982 |
+
# H = c @ torch.linalg.inv(torch.diag_embed(invD) - A) @ b
|
983 |
+
H = c @ torch.linalg.solve(torch.diag_embed(invD) - A, b)
|
984 |
+
|
985 |
+
h = torch.fft.irfft(H.permute(1, 2, 0), n=self.ir_length)
|
986 |
+
|
987 |
+
if self.eq is not None:
|
988 |
+
h = self.eq(h)
|
989 |
+
|
990 |
+
# return fft_conv1d(
|
991 |
+
return conv1d(
|
992 |
+
F.pad(x, (self.ir_length - 1, 0)),
|
993 |
+
h.flip(-1),
|
994 |
+
)
|
modules/rt.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from numba import njit, prange
|
3 |
+
from scipy.signal import firwin2
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from .fx import Delay, FDN, module2coeffs
|
7 |
+
|
8 |
+
|
9 |
+
@njit
|
10 |
+
def rt_fdn(
|
11 |
+
x: np.ndarray,
|
12 |
+
delay_steps: np.ndarray,
|
13 |
+
firs: np.ndarray,
|
14 |
+
U: np.ndarray,
|
15 |
+
):
|
16 |
+
_, T = x.shape
|
17 |
+
M = delay_steps.shape[0]
|
18 |
+
order = firs.shape[1]
|
19 |
+
y = np.zeros_like(x)
|
20 |
+
buf_size = delay_steps.max() + order
|
21 |
+
delay_buf = np.zeros((M, buf_size), dtype=x.dtype)
|
22 |
+
read_pointer = 0
|
23 |
+
|
24 |
+
for t in range(T):
|
25 |
+
# out = delay_buf[(range(M), read_pointers)]
|
26 |
+
# for i in prange(M):
|
27 |
+
# out[i] = delay_buf[i, read_pointers[i]]
|
28 |
+
out = delay_buf[:, read_pointer]
|
29 |
+
y[:, t] = out
|
30 |
+
|
31 |
+
s = out * firs[:, 0]
|
32 |
+
# indexes = (read_pointers[:, None] - np.arange(1, order)) % buf_sizes[:, None]
|
33 |
+
# reg = np.take_along_axis(delay_buf, indexes, axis=1)
|
34 |
+
# s += firs[:, 1:] @ reg.T
|
35 |
+
# for j in prange(M):
|
36 |
+
# s[j] += firs[j, 1:] @ delay_buf[j, indexes[j]]
|
37 |
+
for i in prange(M):
|
38 |
+
for j in prange(1, order):
|
39 |
+
s[i] += firs[i, j] * delay_buf[i, (read_pointer - j) % buf_size]
|
40 |
+
# for i in prange(1, order):
|
41 |
+
# s += firs[:, i] * delay_buf[:, (read_pointer - i) % buf_size]
|
42 |
+
|
43 |
+
feedback = U @ s + x[:, t]
|
44 |
+
w_pointers = (read_pointer + delay_steps) % buf_size
|
45 |
+
# delay_buf[(range(M), w_pointers)] = s + B @ x[:, t]
|
46 |
+
for i in prange(M):
|
47 |
+
delay_buf[i, w_pointers[i]] = feedback[i]
|
48 |
+
read_pointer = (read_pointer + 1) % buf_size
|
49 |
+
|
50 |
+
return y
|
51 |
+
|
52 |
+
|
53 |
+
@njit
|
54 |
+
def rt_delay(
|
55 |
+
x: np.ndarray,
|
56 |
+
delay_step: int,
|
57 |
+
b0: float,
|
58 |
+
b1: float,
|
59 |
+
b2: float,
|
60 |
+
a1: float,
|
61 |
+
a2: float,
|
62 |
+
):
|
63 |
+
T = x.shape[0]
|
64 |
+
y = np.zeros((2, T), dtype=x.dtype)
|
65 |
+
buf_size = delay_step + 1
|
66 |
+
read_pointer = 0
|
67 |
+
delay_buf = np.zeros((2, buf_size), dtype=x.dtype)
|
68 |
+
bq_buf = np.zeros((2, 2), dtype=x.dtype)
|
69 |
+
|
70 |
+
for t in range(T):
|
71 |
+
out = delay_buf[:, read_pointer]
|
72 |
+
y[:, t] = out
|
73 |
+
|
74 |
+
s = bq_buf[:, 0] + b0 * out
|
75 |
+
bq_buf[:, 0] = bq_buf[:, 1] + b1 * out - a1 * s
|
76 |
+
bq_buf[:, 1] = b2 * out - a2 * s
|
77 |
+
|
78 |
+
w_pointer = (read_pointer + delay_step) % buf_size
|
79 |
+
# cross feeding because of ping-pong delay
|
80 |
+
delay_buf[0, w_pointer] = s[1] + x[t]
|
81 |
+
delay_buf[1, w_pointer] = s[0]
|
82 |
+
|
83 |
+
read_pointer = (read_pointer + 1) % buf_size
|
84 |
+
|
85 |
+
return y
|
86 |
+
|
87 |
+
|
88 |
+
class RealTimeDelay(Delay):
|
89 |
+
def forward(self, x):
|
90 |
+
assert x.size(1) == 1, x.size()
|
91 |
+
assert x.size(0) == 1, x.size()
|
92 |
+
with torch.no_grad():
|
93 |
+
delay_in_samples = round(self.sr * self.params.delay.item() * 0.001)
|
94 |
+
feedback = self.params.feedback.item()
|
95 |
+
|
96 |
+
if self.recursive_eq and self.eq is not None:
|
97 |
+
b0, b1, b2, a0, a1, a2 = [p.item() for p in module2coeffs(self.eq)]
|
98 |
+
b0, b1, b2, a1, a2 = b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0
|
99 |
+
else:
|
100 |
+
b0, b1, b2, a1, a2 = 1.0, 0.0, 0.0, 0.0, 0.0
|
101 |
+
|
102 |
+
b0 = b0 * feedback
|
103 |
+
b1 = b1 * feedback
|
104 |
+
b2 = b2 * feedback
|
105 |
+
x_numpy = x.squeeze().cpu().numpy()
|
106 |
+
y_numpy = rt_delay(x_numpy, delay_in_samples, b0, b1, b2, a1, a2)
|
107 |
+
y = torch.from_numpy(y_numpy).unsqueeze(0).to(x.device) * self.params.gain
|
108 |
+
return self.odd_pan(y[:, :1]) + self.even_pan(y[:, 1:])
|
109 |
+
|
110 |
+
|
111 |
+
class RealTimeFDN(FDN):
|
112 |
+
def forward(self, x):
|
113 |
+
assert x.size(1) == 2, x.size()
|
114 |
+
assert x.size(0) == 1, x.size()
|
115 |
+
with torch.no_grad():
|
116 |
+
delays = self.delays if hasattr(self, "delays") else self.params.delays
|
117 |
+
|
118 |
+
c = self.params.c
|
119 |
+
b = self.params.b
|
120 |
+
gamma = self.params.gamma.clone()
|
121 |
+
|
122 |
+
if gamma.size(1) == 1:
|
123 |
+
gamma = gamma ** (delays / delays.min())
|
124 |
+
|
125 |
+
freqs = np.linspace(0, 1, gamma.size(0))
|
126 |
+
firs = np.apply_along_axis(
|
127 |
+
lambda x: firwin2(gamma.size(0) * 2 - 1, freqs, x, fs=2),
|
128 |
+
1,
|
129 |
+
gamma.cpu().numpy().T,
|
130 |
+
).astype(np.float32)
|
131 |
+
shifted_delays = delays - firs.shape[1] // 2
|
132 |
+
|
133 |
+
U = self.params.U
|
134 |
+
|
135 |
+
x = b @ x.squeeze()
|
136 |
+
|
137 |
+
y_numpy = rt_fdn(
|
138 |
+
x.cpu().numpy(),
|
139 |
+
# delays.cpu().numpy(),
|
140 |
+
shifted_delays.cpu().numpy(),
|
141 |
+
# firs.cpu().numpy(),
|
142 |
+
firs,
|
143 |
+
U.cpu().numpy(),
|
144 |
+
)
|
145 |
+
y = c @ torch.from_numpy(y_numpy).to(x.device)
|
146 |
+
y = y.unsqueeze(0)
|
147 |
+
|
148 |
+
if self.eq is not None:
|
149 |
+
y = self.eq(y)
|
150 |
+
return y
|
modules/utils.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from functools import reduce, partial
|
4 |
+
from operator import mul
|
5 |
+
from torch.nn.utils.parametrize import is_parametrized, remove_parametrizations
|
6 |
+
|
7 |
+
|
8 |
+
def chain_functions(*functions):
|
9 |
+
return lambda initial: reduce(lambda x, f: f(x), functions, initial)
|
10 |
+
|
11 |
+
|
12 |
+
def remove_fx_parametrisation(fx):
|
13 |
+
def remover(m):
|
14 |
+
if not is_parametrized(m):
|
15 |
+
return
|
16 |
+
for k in list(m.parametrizations.keys()):
|
17 |
+
remove_parametrizations(m, k)
|
18 |
+
|
19 |
+
fx.apply(remover)
|
20 |
+
return fx
|
21 |
+
|
22 |
+
|
23 |
+
def get_chunks(keys, original_shapes):
|
24 |
+
(position, _), *_ = filter(lambda i_k: "U.original" in i_k[1], enumerate(keys))
|
25 |
+
original_chunks = list(map(partial(reduce, mul), original_shapes))
|
26 |
+
U_matrix_shape = original_shapes[position]
|
27 |
+
|
28 |
+
dimensions_not_need = np.ravel_multi_index(
|
29 |
+
np.tril_indices(**dict(zip(("n", "m"), U_matrix_shape))), U_matrix_shape
|
30 |
+
) + sum(original_chunks[:position])
|
31 |
+
|
32 |
+
selected_chunks = (
|
33 |
+
original_chunks[:position]
|
34 |
+
+ [original_chunks[position] - dimensions_not_need.size]
|
35 |
+
+ original_chunks[position + 1 :]
|
36 |
+
)
|
37 |
+
return selected_chunks, position, U_matrix_shape, dimensions_not_need
|
38 |
+
|
39 |
+
|
40 |
+
def vec2statedict(
|
41 |
+
x: torch.Tensor,
|
42 |
+
keys,
|
43 |
+
original_shapes,
|
44 |
+
selected_chunks,
|
45 |
+
position,
|
46 |
+
U_matrix_shape,
|
47 |
+
):
|
48 |
+
chunks = list(torch.split(x, selected_chunks))
|
49 |
+
U = x.new_zeros(reduce(mul, U_matrix_shape))
|
50 |
+
U[
|
51 |
+
np.ravel_multi_index(
|
52 |
+
np.triu_indices(n=U_matrix_shape[0], k=1, m=U_matrix_shape[1]),
|
53 |
+
U_matrix_shape,
|
54 |
+
)
|
55 |
+
] = chunks[position]
|
56 |
+
chunks[position] = U
|
57 |
+
|
58 |
+
state_dict = dict(
|
59 |
+
zip(
|
60 |
+
keys,
|
61 |
+
map(lambda x, shape: x.reshape(*shape), chunks, original_shapes),
|
62 |
+
)
|
63 |
+
)
|
64 |
+
return state_dict
|
presets/fx_config.yaml
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epochs: 2000
|
2 |
+
data_dir: null
|
3 |
+
log_dir: null
|
4 |
+
lufs: -18
|
5 |
+
sr: 44100
|
6 |
+
chunk_duration: 12
|
7 |
+
chunk_overlap: 5
|
8 |
+
device: cuda
|
9 |
+
batch_size: 35
|
10 |
+
dataset: medley_vocal
|
11 |
+
regularise_delay: true
|
12 |
+
model:
|
13 |
+
_target_: torch.nn.Sequential
|
14 |
+
_args_:
|
15 |
+
- _target_: modules.fx.Peak
|
16 |
+
sr: 44100
|
17 |
+
freq: 800
|
18 |
+
min_freq: 33
|
19 |
+
max_freq: 5400
|
20 |
+
- _target_: modules.fx.Peak
|
21 |
+
sr: 44100
|
22 |
+
freq: 4000
|
23 |
+
min_freq: 200
|
24 |
+
max_freq: 17500
|
25 |
+
- _target_: modules.fx.LowShelf
|
26 |
+
sr: 44100
|
27 |
+
freq: 115
|
28 |
+
min_freq: 30
|
29 |
+
max_freq: 200
|
30 |
+
- _target_: modules.fx.HighShelf
|
31 |
+
sr: 44100
|
32 |
+
freq: 6000
|
33 |
+
min_freq: 750
|
34 |
+
max_freq: 8300
|
35 |
+
- _target_: modules.fx.LowPass
|
36 |
+
sr: 44100
|
37 |
+
freq: 17500
|
38 |
+
min_freq: 200
|
39 |
+
max_freq: 18000
|
40 |
+
- _target_: modules.fx.HighPass
|
41 |
+
sr: 44100
|
42 |
+
freq: 200
|
43 |
+
min_freq: 16
|
44 |
+
max_freq: 5300
|
45 |
+
- _target_: modules.fx.CompressorExpander
|
46 |
+
sr: 44100
|
47 |
+
cmp_ratio: 2.0
|
48 |
+
exp_ratio: 0.5
|
49 |
+
at_ms: 50.0
|
50 |
+
rt_ms: 50.0
|
51 |
+
avg_coef: 0.3
|
52 |
+
cmp_th: -18.0
|
53 |
+
exp_th: -48.0
|
54 |
+
make_up: 0.0
|
55 |
+
lookahead: true
|
56 |
+
max_lookahead: 15
|
57 |
+
- _target_: modules.fx.SendFXsAndSum
|
58 |
+
_args_:
|
59 |
+
- _target_: modules.fx.SurrogateDelay
|
60 |
+
sr: 44100
|
61 |
+
delay: 400
|
62 |
+
dropout: 0
|
63 |
+
straight_through: true
|
64 |
+
recursive_eq: true
|
65 |
+
ir_duration: 4
|
66 |
+
eq:
|
67 |
+
_target_: modules.fx.LowPass
|
68 |
+
sr: 44100
|
69 |
+
freq: 8000
|
70 |
+
min_freq: 200
|
71 |
+
max_freq: 16000
|
72 |
+
min_Q: 0.5
|
73 |
+
max_Q: 2
|
74 |
+
- _target_: modules.fx.FDN
|
75 |
+
sr: 44100
|
76 |
+
delays:
|
77 |
+
- 997
|
78 |
+
- 1153
|
79 |
+
- 1327
|
80 |
+
- 1559
|
81 |
+
- 1801
|
82 |
+
- 2099
|
83 |
+
num_decay_freq: 49
|
84 |
+
delay_independent_decay: true
|
85 |
+
ir_duration: 12
|
86 |
+
eq:
|
87 |
+
_target_: torch.nn.Sequential
|
88 |
+
_args_:
|
89 |
+
- _target_: modules.fx.Peak
|
90 |
+
sr: 44100
|
91 |
+
freq: 800
|
92 |
+
min_freq: 200
|
93 |
+
max_freq: 2500
|
94 |
+
min_Q: 0.1
|
95 |
+
max_Q: 3
|
96 |
+
- _target_: modules.fx.Peak
|
97 |
+
sr: 44100
|
98 |
+
freq: 4000
|
99 |
+
min_freq: 600
|
100 |
+
max_freq: 7000
|
101 |
+
min_Q: 0.1
|
102 |
+
max_Q: 3
|
103 |
+
- _target_: modules.fx.LowShelf
|
104 |
+
sr: 44100
|
105 |
+
freq: 115
|
106 |
+
min_freq: 30
|
107 |
+
max_freq: 450
|
108 |
+
- _target_: modules.fx.HighShelf
|
109 |
+
sr: 44100
|
110 |
+
freq: 8000
|
111 |
+
min_freq: 1500
|
112 |
+
max_freq: 16000
|
113 |
+
cross_send: true
|
114 |
+
pan_direct: true
|
115 |
+
optimiser:
|
116 |
+
_target_: torch.optim.Adam
|
117 |
+
lr: 0.01
|
118 |
+
mss:
|
119 |
+
fft_sizes:
|
120 |
+
- 128
|
121 |
+
- 512
|
122 |
+
- 2048
|
123 |
+
hop_sizes:
|
124 |
+
- 32
|
125 |
+
- 128
|
126 |
+
- 512
|
127 |
+
mldr:
|
128 |
+
s_taus:
|
129 |
+
- 50
|
130 |
+
- 100
|
131 |
+
l_taus:
|
132 |
+
- 1000
|
133 |
+
- 2000
|
134 |
+
loss_fn:
|
135 |
+
_target_: loss.SumLosses
|
136 |
+
weights:
|
137 |
+
- 1.0
|
138 |
+
- 0.5
|
139 |
+
- 0.5
|
140 |
+
- 0.25
|
141 |
+
loss_fns:
|
142 |
+
- _target_: auraloss.freq.MultiResolutionSTFTLoss
|
143 |
+
fft_sizes:
|
144 |
+
- 128
|
145 |
+
- 512
|
146 |
+
- 2048
|
147 |
+
hop_sizes:
|
148 |
+
- 32
|
149 |
+
- 128
|
150 |
+
- 512
|
151 |
+
win_lengths:
|
152 |
+
- 128
|
153 |
+
- 512
|
154 |
+
- 2048
|
155 |
+
sample_rate: 44100
|
156 |
+
perceptual_weighting: true
|
157 |
+
- _target_: auraloss.freq.SumAndDifferenceSTFTLoss
|
158 |
+
fft_sizes:
|
159 |
+
- 128
|
160 |
+
- 512
|
161 |
+
- 2048
|
162 |
+
hop_sizes:
|
163 |
+
- 32
|
164 |
+
- 128
|
165 |
+
- 512
|
166 |
+
win_lengths:
|
167 |
+
- 128
|
168 |
+
- 512
|
169 |
+
- 2048
|
170 |
+
sample_rate: 44100
|
171 |
+
perceptual_weighting: true
|
172 |
+
- _target_: loss.ldr.MLDRLoss
|
173 |
+
sr: 44100
|
174 |
+
s_taus:
|
175 |
+
- 50
|
176 |
+
- 100
|
177 |
+
l_taus:
|
178 |
+
- 1000
|
179 |
+
- 2000
|
180 |
+
- _target_: loss.ldr.MLDRLoss
|
181 |
+
sr: 44100
|
182 |
+
mid_side: true
|
183 |
+
s_taus:
|
184 |
+
- 50
|
185 |
+
- 100
|
186 |
+
l_taus:
|
187 |
+
- 1000
|
188 |
+
- 2000
|
presets/internal/info.json
ADDED
@@ -0,0 +1,1695 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"runs": [
|
3 |
+
"~/processed/anon_tokyo/run_1",
|
4 |
+
"~/processed/anon_tokyo/run_1",
|
5 |
+
"~/processed/anon_tokyo/run_1",
|
6 |
+
"~/processed/anon_tokyo/run_1",
|
7 |
+
"~/processed/anon_tokyo/run_1",
|
8 |
+
"~/processed/anon_tokyo/run_1",
|
9 |
+
"~/processed/anon_tokyo/run_1",
|
10 |
+
"~/processed/anon_tokyo/run_1",
|
11 |
+
"~/processed/anon_tokyo/run_1",
|
12 |
+
"~/processed/anon_tokyo/run_1",
|
13 |
+
"~/processed/anon_tokyo/run_1",
|
14 |
+
"~/processed/anon_tokyo/run_1",
|
15 |
+
"~/processed/anon_tokyo/run_1",
|
16 |
+
"~/processed/anon_tokyo/run_1",
|
17 |
+
"~/processed/anon_tokyo/run_1",
|
18 |
+
"~/processed/anon_tokyo/run_1",
|
19 |
+
"~/processed/anon_tokyo/run_1",
|
20 |
+
"~/processed/anon_tokyo/run_1",
|
21 |
+
"~/processed/anon_tokyo/run_1",
|
22 |
+
"~/processed/anon_tokyo/run_1",
|
23 |
+
"~/processed/anon_tokyo/run_1",
|
24 |
+
"~/processed/anon_tokyo/run_1",
|
25 |
+
"~/processed/anon_tokyo/run_1",
|
26 |
+
"~/processed/anon_tokyo/run_1",
|
27 |
+
"~/processed/anon_tokyo/run_1",
|
28 |
+
"~/processed/anon_tokyo/run_1",
|
29 |
+
"~/processed/anon_tokyo/run_1",
|
30 |
+
"~/processed/anon_tokyo/run_1",
|
31 |
+
"~/processed/anon_tokyo/run_1",
|
32 |
+
"~/processed/anon_tokyo/run_1",
|
33 |
+
"~/processed/anon_tokyo/run_1",
|
34 |
+
"~/processed/anon_tokyo/run_1",
|
35 |
+
"~/processed/anon_tokyo/run_1",
|
36 |
+
"~/processed/anon_tokyo/run_1",
|
37 |
+
"~/processed/anon_tokyo/run_1",
|
38 |
+
"~/processed/anon_tokyo/run_1",
|
39 |
+
"~/processed/anon_tokyo/run_1",
|
40 |
+
"~/processed/anon_tokyo/run_1",
|
41 |
+
"~/processed/anon_tokyo/run_1",
|
42 |
+
"~/processed/anon_tokyo/run_1",
|
43 |
+
"~/processed/anon_tokyo/run_1",
|
44 |
+
"~/processed/anon_tokyo/run_1",
|
45 |
+
"~/processed/anon_tokyo/run_1",
|
46 |
+
"~/processed/anon_tokyo/run_1",
|
47 |
+
"~/processed/anon_tokyo/run_1",
|
48 |
+
"~/processed/anon_tokyo/run_1",
|
49 |
+
"~/processed/anon_tokyo/run_1",
|
50 |
+
"~/processed/anon_tokyo/run_1",
|
51 |
+
"~/processed/anon_tokyo/run_1",
|
52 |
+
"~/processed/anon_tokyo/run_1",
|
53 |
+
"~/processed/anon_tokyo/run_1",
|
54 |
+
"~/processed/anon_tokyo/run_1",
|
55 |
+
"~/processed/anon_tokyo/run_1",
|
56 |
+
"~/processed/anon_tokyo/run_1",
|
57 |
+
"~/processed/anon_tokyo/run_1",
|
58 |
+
"~/processed/anon_tokyo/run_1",
|
59 |
+
"~/processed/anon_tokyo/run_1",
|
60 |
+
"~/processed/anon_tokyo/run_1",
|
61 |
+
"~/processed/anon_tokyo/run_1",
|
62 |
+
"~/processed/anon_tokyo/run_1",
|
63 |
+
"~/processed/anon_tokyo/run_1",
|
64 |
+
"~/processed/anon_tokyo/run_1",
|
65 |
+
"~/processed/anon_tokyo/run_1",
|
66 |
+
"~/processed/anon_tokyo/run_1",
|
67 |
+
"~/processed/anon_tokyo/run_1",
|
68 |
+
"~/processed/anon_tokyo/run_1",
|
69 |
+
"~/processed/anon_tokyo/run_1",
|
70 |
+
"~/processed/anon_tokyo/run_1",
|
71 |
+
"~/processed/anon_tokyo/run_1",
|
72 |
+
"~/processed/anon_tokyo/run_1",
|
73 |
+
"~/processed/anon_tokyo/run_1",
|
74 |
+
"~/processed/anon_tokyo/run_1",
|
75 |
+
"~/processed/anon_tokyo/run_1",
|
76 |
+
"~/processed/anon_tokyo/run_1",
|
77 |
+
"~/processed/anon_tokyo/run_1",
|
78 |
+
"~/processed/anon_tokyo/run_1",
|
79 |
+
"~/processed/anon_tokyo/run_1",
|
80 |
+
"~/processed/anon_tokyo/run_1",
|
81 |
+
"~/processed/anon_tokyo/run_1",
|
82 |
+
"~/processed/anon_tokyo/run_1",
|
83 |
+
"~/processed/anon_tokyo/run_1",
|
84 |
+
"~/processed/anon_tokyo/run_1",
|
85 |
+
"~/processed/anon_tokyo/run_1",
|
86 |
+
"~/processed/anon_tokyo/run_1",
|
87 |
+
"~/processed/anon_tokyo/run_1",
|
88 |
+
"~/processed/anon_tokyo/run_1",
|
89 |
+
"~/processed/anon_tokyo/run_1",
|
90 |
+
"~/processed/anon_tokyo/run_1",
|
91 |
+
"~/processed/anon_tokyo/run_1",
|
92 |
+
"~/processed/anon_tokyo/run_1",
|
93 |
+
"~/processed/anon_tokyo/run_1",
|
94 |
+
"~/processed/anon_tokyo/run_1",
|
95 |
+
"~/processed/anon_tokyo/run_1",
|
96 |
+
"~/processed/anon_tokyo/run_1",
|
97 |
+
"~/processed/anon_tokyo/run_1",
|
98 |
+
"~/processed/anon_tokyo/run_1",
|
99 |
+
"~/processed/anon_tokyo/run_1",
|
100 |
+
"~/processed/anon_tokyo/run_1",
|
101 |
+
"~/processed/anon_tokyo/run_1",
|
102 |
+
"~/processed/anon_tokyo/run_1",
|
103 |
+
"~/processed/anon_tokyo/run_1",
|
104 |
+
"~/processed/anon_tokyo/run_1",
|
105 |
+
"~/processed/anon_tokyo/run_1",
|
106 |
+
"~/processed/anon_tokyo/run_1",
|
107 |
+
"~/processed/anon_tokyo/run_1",
|
108 |
+
"~/processed/anon_tokyo/run_1",
|
109 |
+
"~/processed/anon_tokyo/run_1",
|
110 |
+
"~/processed/anon_tokyo/run_1",
|
111 |
+
"~/processed/anon_tokyo/run_1",
|
112 |
+
"~/processed/anon_tokyo/run_1",
|
113 |
+
"~/processed/anon_tokyo/run_1",
|
114 |
+
"~/processed/anon_tokyo/run_1",
|
115 |
+
"~/processed/anon_tokyo/run_1",
|
116 |
+
"~/processed/anon_tokyo/run_1",
|
117 |
+
"~/processed/anon_tokyo/run_1",
|
118 |
+
"~/processed/anon_tokyo/run_1",
|
119 |
+
"~/processed/anon_tokyo/run_1",
|
120 |
+
"~/processed/anon_tokyo/run_1",
|
121 |
+
"~/processed/anon_tokyo/run_1",
|
122 |
+
"~/processed/anon_tokyo/run_1",
|
123 |
+
"~/processed/anon_tokyo/run_1",
|
124 |
+
"~/processed/anon_tokyo/run_1",
|
125 |
+
"~/processed/anon_tokyo/run_1",
|
126 |
+
"~/processed/anon_tokyo/run_1",
|
127 |
+
"~/processed/anon_tokyo/run_1",
|
128 |
+
"~/processed/anon_tokyo/run_1",
|
129 |
+
"~/processed/anon_tokyo/run_1",
|
130 |
+
"~/processed/anon_tokyo/run_1",
|
131 |
+
"~/processed/anon_tokyo/run_1",
|
132 |
+
"~/processed/anon_tokyo/run_1",
|
133 |
+
"~/processed/anon_tokyo/run_1",
|
134 |
+
"~/processed/anon_tokyo/run_1",
|
135 |
+
"~/processed/anon_tokyo/run_1",
|
136 |
+
"~/processed/anon_tokyo/run_1",
|
137 |
+
"~/processed/anon_tokyo/run_1",
|
138 |
+
"~/processed/anon_tokyo/run_1",
|
139 |
+
"~/processed/anon_tokyo/run_1",
|
140 |
+
"~/processed/anon_tokyo/run_1",
|
141 |
+
"~/processed/anon_tokyo/run_1",
|
142 |
+
"~/processed/anon_tokyo/run_1",
|
143 |
+
"~/processed/anon_tokyo/run_1",
|
144 |
+
"~/processed/anon_tokyo/run_1",
|
145 |
+
"~/processed/anon_tokyo/run_1",
|
146 |
+
"~/processed/anon_tokyo/run_1",
|
147 |
+
"~/processed/anon_tokyo/run_1",
|
148 |
+
"~/processed/anon_tokyo/run_1",
|
149 |
+
"~/processed/anon_tokyo/run_1",
|
150 |
+
"~/processed/anon_tokyo/run_1",
|
151 |
+
"~/processed/anon_tokyo/run_1",
|
152 |
+
"~/processed/anon_tokyo/run_1",
|
153 |
+
"~/processed/anon_tokyo/run_1",
|
154 |
+
"~/processed/anon_tokyo/run_1",
|
155 |
+
"~/processed/anon_tokyo/run_1",
|
156 |
+
"~/processed/anon_tokyo/run_1",
|
157 |
+
"~/processed/anon_tokyo/run_1",
|
158 |
+
"~/processed/anon_tokyo/run_1",
|
159 |
+
"~/processed/anon_tokyo/run_1",
|
160 |
+
"~/processed/anon_tokyo/run_1",
|
161 |
+
"~/processed/anon_tokyo/run_1",
|
162 |
+
"~/processed/anon_tokyo/run_1",
|
163 |
+
"~/processed/anon_tokyo/run_1",
|
164 |
+
"~/processed/anon_tokyo/run_1",
|
165 |
+
"~/processed/anon_tokyo/run_1",
|
166 |
+
"~/processed/anon_tokyo/run_1",
|
167 |
+
"~/processed/anon_tokyo/run_1",
|
168 |
+
"~/processed/anon_tokyo/run_1",
|
169 |
+
"~/processed/anon_tokyo/run_1",
|
170 |
+
"~/processed/anon_tokyo/run_1",
|
171 |
+
"~/processed/anon_tokyo/run_1",
|
172 |
+
"~/processed/anon_tokyo/run_1",
|
173 |
+
"~/processed/anon_tokyo/run_1",
|
174 |
+
"~/processed/anon_tokyo/run_1",
|
175 |
+
"~/processed/anon_tokyo/run_1",
|
176 |
+
"~/processed/anon_tokyo/run_1",
|
177 |
+
"~/processed/anon_tokyo/run_1",
|
178 |
+
"~/processed/anon_tokyo/run_1",
|
179 |
+
"~/processed/anon_tokyo/run_1",
|
180 |
+
"~/processed/anon_tokyo/run_1",
|
181 |
+
"~/processed/anon_tokyo/run_1",
|
182 |
+
"~/processed/anon_tokyo/run_1",
|
183 |
+
"~/processed/anon_tokyo/run_1",
|
184 |
+
"~/processed/anon_tokyo/run_1",
|
185 |
+
"~/processed/anon_tokyo/run_1",
|
186 |
+
"~/processed/anon_tokyo/run_1",
|
187 |
+
"~/processed/anon_tokyo/run_1",
|
188 |
+
"~/processed/anon_tokyo/run_1",
|
189 |
+
"~/processed/anon_tokyo/run_1",
|
190 |
+
"~/processed/anon_tokyo/run_1",
|
191 |
+
"~/processed/anon_tokyo/run_1",
|
192 |
+
"~/processed/anon_tokyo/run_1",
|
193 |
+
"~/processed/anon_tokyo/run_1",
|
194 |
+
"~/processed/anon_tokyo/run_1",
|
195 |
+
"~/processed/anon_tokyo/run_1",
|
196 |
+
"~/processed/anon_tokyo/run_1",
|
197 |
+
"~/processed/anon_tokyo/run_1",
|
198 |
+
"~/processed/anon_tokyo/run_1",
|
199 |
+
"~/processed/anon_tokyo/run_1",
|
200 |
+
"~/processed/anon_tokyo/run_1",
|
201 |
+
"~/processed/anon_tokyo/run_1",
|
202 |
+
"~/processed/anon_tokyo/run_1",
|
203 |
+
"~/processed/anon_tokyo/run_1",
|
204 |
+
"~/processed/anon_tokyo/run_1",
|
205 |
+
"~/processed/anon_tokyo/run_1",
|
206 |
+
"~/processed/anon_tokyo/run_1",
|
207 |
+
"~/processed/anon_tokyo/run_1",
|
208 |
+
"~/processed/anon_tokyo/run_1",
|
209 |
+
"~/processed/anon_tokyo/run_1",
|
210 |
+
"~/processed/anon_tokyo/run_1",
|
211 |
+
"~/processed/anon_tokyo/run_1",
|
212 |
+
"~/processed/anon_tokyo/run_1",
|
213 |
+
"~/processed/anon_tokyo/run_1",
|
214 |
+
"~/processed/anon_tokyo/run_1",
|
215 |
+
"~/processed/anon_tokyo/run_1",
|
216 |
+
"~/processed/anon_tokyo/run_1",
|
217 |
+
"~/processed/anon_tokyo/run_1",
|
218 |
+
"~/processed/anon_tokyo/run_1",
|
219 |
+
"~/processed/anon_tokyo/run_1",
|
220 |
+
"~/processed/anon_tokyo/run_1",
|
221 |
+
"~/processed/anon_tokyo/run_1",
|
222 |
+
"~/processed/anon_tokyo/run_1",
|
223 |
+
"~/processed/anon_tokyo/run_1",
|
224 |
+
"~/processed/anon_tokyo/run_1",
|
225 |
+
"~/processed/anon_tokyo/run_1",
|
226 |
+
"~/processed/anon_tokyo/run_1",
|
227 |
+
"~/processed/anon_tokyo/run_1",
|
228 |
+
"~/processed/anon_tokyo/run_1",
|
229 |
+
"~/processed/anon_tokyo/run_1",
|
230 |
+
"~/processed/anon_tokyo/run_1",
|
231 |
+
"~/processed/anon_tokyo/run_1",
|
232 |
+
"~/processed/anon_tokyo/run_1",
|
233 |
+
"~/processed/anon_tokyo/run_1",
|
234 |
+
"~/processed/anon_tokyo/run_1",
|
235 |
+
"~/processed/anon_tokyo/run_1",
|
236 |
+
"~/processed/anon_tokyo/run_1",
|
237 |
+
"~/processed/anon_tokyo/run_1",
|
238 |
+
"~/processed/anon_tokyo/run_1",
|
239 |
+
"~/processed/anon_tokyo/run_1",
|
240 |
+
"~/processed/anon_tokyo/run_1",
|
241 |
+
"~/processed/anon_tokyo/run_1",
|
242 |
+
"~/processed/anon_tokyo/run_1",
|
243 |
+
"~/processed/anon_tokyo/run_1",
|
244 |
+
"~/processed/anon_tokyo/run_1",
|
245 |
+
"~/processed/anon_tokyo/run_1",
|
246 |
+
"~/processed/anon_tokyo/run_1",
|
247 |
+
"~/processed/anon_tokyo/run_1",
|
248 |
+
"~/processed/anon_tokyo/run_1",
|
249 |
+
"~/processed/anon_tokyo/run_1",
|
250 |
+
"~/processed/anon_tokyo/run_1",
|
251 |
+
"~/processed/anon_tokyo/run_1",
|
252 |
+
"~/processed/anon_tokyo/run_1",
|
253 |
+
"~/processed/anon_tokyo/run_1",
|
254 |
+
"~/processed/anon_tokyo/run_1",
|
255 |
+
"~/processed/anon_tokyo/run_1",
|
256 |
+
"~/processed/anon_tokyo/run_1",
|
257 |
+
"~/processed/anon_tokyo/run_1",
|
258 |
+
"~/processed/anon_tokyo/run_1",
|
259 |
+
"~/processed/anon_tokyo/run_1",
|
260 |
+
"~/processed/anon_tokyo/run_1",
|
261 |
+
"~/processed/anon_tokyo/run_1",
|
262 |
+
"~/processed/anon_tokyo/run_1",
|
263 |
+
"~/processed/anon_tokyo/run_1",
|
264 |
+
"~/processed/anon_tokyo/run_1",
|
265 |
+
"~/processed/anon_tokyo/run_1",
|
266 |
+
"~/processed/anon_tokyo/run_1",
|
267 |
+
"~/processed/anon_tokyo/run_1",
|
268 |
+
"~/processed/anon_tokyo/run_1",
|
269 |
+
"~/processed/anon_tokyo/run_1",
|
270 |
+
"~/processed/anon_tokyo/run_1",
|
271 |
+
"~/processed/anon_tokyo/run_1",
|
272 |
+
"~/processed/anon_tokyo/run_1",
|
273 |
+
"~/processed/anon_tokyo/run_1",
|
274 |
+
"~/processed/anon_tokyo/run_1",
|
275 |
+
"~/processed/anon_tokyo/run_1",
|
276 |
+
"~/processed/anon_tokyo/run_1",
|
277 |
+
"~/processed/anon_tokyo/run_1",
|
278 |
+
"~/processed/anon_tokyo/run_1",
|
279 |
+
"~/processed/anon_tokyo/run_1",
|
280 |
+
"~/processed/anon_tokyo/run_1",
|
281 |
+
"~/processed/anon_tokyo/run_1",
|
282 |
+
"~/processed/anon_tokyo/run_1",
|
283 |
+
"~/processed/anon_tokyo/run_1",
|
284 |
+
"~/processed/anon_tokyo/run_1",
|
285 |
+
"~/processed/anon_tokyo/run_1",
|
286 |
+
"~/processed/anon_tokyo/run_1",
|
287 |
+
"~/processed/anon_tokyo/run_1",
|
288 |
+
"~/processed/anon_tokyo/run_1",
|
289 |
+
"~/processed/anon_tokyo/run_1",
|
290 |
+
"~/processed/anon_tokyo/run_1",
|
291 |
+
"~/processed/anon_tokyo/run_1",
|
292 |
+
"~/processed/anon_tokyo/run_1",
|
293 |
+
"~/processed/anon_tokyo/run_1",
|
294 |
+
"~/processed/anon_tokyo/run_1",
|
295 |
+
"~/processed/anon_tokyo/run_1",
|
296 |
+
"~/processed/anon_tokyo/run_1",
|
297 |
+
"~/processed/anon_tokyo/run_1",
|
298 |
+
"~/processed/anon_tokyo/run_1",
|
299 |
+
"~/processed/anon_tokyo/run_1",
|
300 |
+
"~/processed/anon_tokyo/run_1",
|
301 |
+
"~/processed/anon_tokyo/run_1",
|
302 |
+
"~/processed/anon_tokyo/run_1",
|
303 |
+
"~/processed/anon_tokyo/run_1",
|
304 |
+
"~/processed/anon_tokyo/run_1",
|
305 |
+
"~/processed/anon_tokyo/run_1",
|
306 |
+
"~/processed/anon_tokyo/run_1",
|
307 |
+
"~/processed/anon_tokyo/run_1",
|
308 |
+
"~/processed/anon_tokyo/run_1",
|
309 |
+
"~/processed/anon_tokyo/run_1",
|
310 |
+
"~/processed/anon_tokyo/run_1",
|
311 |
+
"~/processed/anon_tokyo/run_1",
|
312 |
+
"~/processed/anon_tokyo/run_1",
|
313 |
+
"~/processed/anon_tokyo/run_1",
|
314 |
+
"~/processed/anon_tokyo/run_1",
|
315 |
+
"~/processed/anon_tokyo/run_1",
|
316 |
+
"~/processed/anon_tokyo/run_1",
|
317 |
+
"~/processed/anon_tokyo/run_1",
|
318 |
+
"~/processed/anon_tokyo/run_1",
|
319 |
+
"~/processed/anon_tokyo/run_1",
|
320 |
+
"~/processed/anon_tokyo/run_1",
|
321 |
+
"~/processed/anon_tokyo/run_1",
|
322 |
+
"~/processed/anon_tokyo/run_1",
|
323 |
+
"~/processed/anon_tokyo/run_1",
|
324 |
+
"~/processed/anon_tokyo/run_1",
|
325 |
+
"~/processed/anon_tokyo/run_1",
|
326 |
+
"~/processed/anon_tokyo/run_1",
|
327 |
+
"~/processed/anon_tokyo/run_1",
|
328 |
+
"~/processed/anon_tokyo/run_1",
|
329 |
+
"~/processed/anon_tokyo/run_1",
|
330 |
+
"~/processed/anon_tokyo/run_1",
|
331 |
+
"~/processed/anon_tokyo/run_1",
|
332 |
+
"~/processed/anon_tokyo/run_1",
|
333 |
+
"~/processed/anon_tokyo/run_1",
|
334 |
+
"~/processed/anon_tokyo/run_1",
|
335 |
+
"~/processed/anon_tokyo/run_1",
|
336 |
+
"~/processed/anon_tokyo/run_1",
|
337 |
+
"~/processed/anon_tokyo/run_1",
|
338 |
+
"~/processed/anon_tokyo/run_1",
|
339 |
+
"~/processed/anon_tokyo/run_1",
|
340 |
+
"~/processed/anon_tokyo/run_1",
|
341 |
+
"~/processed/anon_tokyo/run_1",
|
342 |
+
"~/processed/anon_tokyo/run_1",
|
343 |
+
"~/processed/anon_tokyo/run_1",
|
344 |
+
"~/processed/anon_tokyo/run_1",
|
345 |
+
"~/processed/anon_tokyo/run_1",
|
346 |
+
"~/processed/anon_tokyo/run_1",
|
347 |
+
"~/processed/anon_tokyo/run_1",
|
348 |
+
"~/processed/anon_tokyo/run_1",
|
349 |
+
"~/processed/anon_tokyo/run_1",
|
350 |
+
"~/processed/anon_tokyo/run_1",
|
351 |
+
"~/processed/anon_tokyo/run_1",
|
352 |
+
"~/processed/anon_tokyo/run_1",
|
353 |
+
"~/processed/anon_tokyo/run_1",
|
354 |
+
"~/processed/anon_tokyo/run_1",
|
355 |
+
"~/processed/anon_tokyo/run_1",
|
356 |
+
"~/processed/anon_tokyo/run_1",
|
357 |
+
"~/processed/anon_tokyo/run_1",
|
358 |
+
"~/processed/anon_tokyo/run_1",
|
359 |
+
"~/processed/anon_tokyo/run_1",
|
360 |
+
"~/processed/anon_tokyo/run_1",
|
361 |
+
"~/processed/anon_tokyo/run_1",
|
362 |
+
"~/processed/anon_tokyo/run_1",
|
363 |
+
"~/processed/anon_tokyo/run_1",
|
364 |
+
"~/processed/anon_tokyo/run_1",
|
365 |
+
"~/processed/anon_tokyo/run_1",
|
366 |
+
"~/processed/anon_tokyo/run_1",
|
367 |
+
"~/processed/anon_tokyo/run_1",
|
368 |
+
"~/processed/anon_tokyo/run_1",
|
369 |
+
"~/processed/anon_tokyo/run_1",
|
370 |
+
"~/processed/anon_tokyo/run_1",
|
371 |
+
"~/processed/anon_tokyo/run_1",
|
372 |
+
"~/processed/anon_tokyo/run_1",
|
373 |
+
"~/processed/anon_tokyo/run_1",
|
374 |
+
"~/processed/anon_tokyo/run_1",
|
375 |
+
"~/processed/anon_tokyo/run_1",
|
376 |
+
"~/processed/anon_tokyo/run_1",
|
377 |
+
"~/processed/anon_tokyo/run_1",
|
378 |
+
"~/processed/anon_tokyo/run_1",
|
379 |
+
"~/processed/anon_tokyo/run_1",
|
380 |
+
"~/processed/anon_tokyo/run_1",
|
381 |
+
"~/processed/anon_tokyo/run_1",
|
382 |
+
"~/processed/anon_tokyo/run_1",
|
383 |
+
"~/processed/anon_tokyo/run_1",
|
384 |
+
"~/processed/anon_tokyo/run_1",
|
385 |
+
"~/processed/anon_tokyo/run_1",
|
386 |
+
"~/processed/anon_tokyo/run_1",
|
387 |
+
"~/processed/anon_tokyo/run_1",
|
388 |
+
"~/processed/anon_tokyo/run_1",
|
389 |
+
"~/processed/anon_tokyo/run_1",
|
390 |
+
"~/processed/anon_tokyo/run_1",
|
391 |
+
"~/processed/anon_tokyo/run_1",
|
392 |
+
"~/processed/anon_tokyo/run_1"
|
393 |
+
],
|
394 |
+
"dry_files": [
|
395 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
396 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
397 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
398 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
399 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
400 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
401 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
402 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
403 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
404 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
405 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
406 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
407 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
408 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
409 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
410 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
411 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
412 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
413 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
414 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
415 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
416 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
417 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
418 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
419 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
420 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
421 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
422 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
423 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
424 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
425 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
426 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
427 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
428 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
429 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
430 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
431 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
432 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
433 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
434 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
435 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
436 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
437 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
438 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
439 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
440 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
441 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
442 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
443 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
444 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
445 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
446 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
447 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
448 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
449 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
450 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
451 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
452 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
453 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
454 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
455 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
456 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
457 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
458 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
459 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
460 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
461 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
462 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
463 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
464 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
465 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
466 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
467 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
468 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
469 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
470 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
471 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
472 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
473 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
474 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
475 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
476 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
477 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
478 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
479 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
480 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
481 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
482 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
483 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
484 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
485 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
486 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
487 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
488 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
489 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
490 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
491 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
492 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
493 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
494 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
495 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
496 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
497 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
498 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
499 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
500 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
501 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
502 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
503 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
504 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
505 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
506 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
507 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
508 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
509 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
510 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
511 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
512 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
513 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
514 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
515 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
516 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
517 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
518 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
519 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
520 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
521 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
522 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
523 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
524 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
525 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
526 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
527 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
528 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
529 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
530 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
531 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
532 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
533 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
534 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
535 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
536 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
537 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
538 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
539 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
540 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
541 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
542 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
543 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
544 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
545 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
546 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
547 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
548 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
549 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
550 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
551 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
552 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
553 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
554 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
555 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
556 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
557 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
558 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
559 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
560 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
561 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
562 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
563 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
564 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
565 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
566 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
567 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
568 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
569 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
570 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
571 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
572 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
573 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
574 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
575 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
576 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
577 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
578 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
579 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
580 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
581 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
582 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
583 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
584 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
585 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
586 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
587 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
588 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
589 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
590 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
591 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
592 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
593 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
594 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
595 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
596 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
597 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
598 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
599 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
600 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
601 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
602 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
603 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
604 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
605 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
606 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
607 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
608 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
609 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
610 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
611 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
612 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
613 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
614 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
615 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
616 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
617 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
618 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
619 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
620 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
621 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
622 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
623 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
624 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
625 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
626 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
627 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
628 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
629 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
630 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
631 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
632 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
633 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
634 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
635 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
636 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
637 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
638 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
639 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
640 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
641 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
642 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
643 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
644 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
645 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
646 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
647 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
648 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
649 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
650 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
651 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
652 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
653 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
654 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
655 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
656 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
657 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
658 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
659 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
660 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
661 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
662 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
663 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
664 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
665 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
666 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
667 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
668 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
669 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
670 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
671 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
672 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
673 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
674 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
675 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
676 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
677 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
678 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
679 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
680 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
681 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
682 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
683 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
684 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
685 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
686 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
687 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
688 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
689 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
690 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
691 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
692 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
693 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
694 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
695 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
696 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
697 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
698 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
699 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
700 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
701 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
702 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
703 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
704 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
705 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
706 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
707 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
708 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
709 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
710 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
711 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
712 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
713 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
714 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
715 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
716 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
717 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
718 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
719 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
720 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
721 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
722 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
723 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
724 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
725 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
726 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
727 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
728 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
729 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
730 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
731 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
732 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
733 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
734 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
735 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
736 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
737 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
738 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
739 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
740 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
741 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
742 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
743 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
744 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
745 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
746 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
747 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
748 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
749 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
750 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
751 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
752 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
753 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
754 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
755 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
756 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
757 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
758 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
759 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
760 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
761 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
762 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
763 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
764 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
765 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
766 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
767 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
768 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
769 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
770 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
771 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
772 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
773 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
774 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
775 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
776 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
777 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
778 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
779 |
+
"/data/internal/anon_tokyo/togawa_group.wav"
|
780 |
+
],
|
781 |
+
"wet_files": [
|
782 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
783 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
784 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
785 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
786 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
787 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
788 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
789 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
790 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
791 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
792 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
793 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
794 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
795 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
796 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
797 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
798 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
799 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
800 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
801 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
802 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
803 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
804 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
805 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
806 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
807 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
808 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
809 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
810 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
811 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
812 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
813 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
814 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
815 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
816 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
817 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
818 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
819 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
820 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
821 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
822 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
823 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
824 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
825 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
826 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
827 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
828 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
829 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
830 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
831 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
832 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
833 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
834 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
835 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
836 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
837 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
838 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
839 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
840 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
841 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
842 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
843 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
844 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
845 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
846 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
847 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
848 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
849 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
850 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
851 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
852 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
853 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
854 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
855 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
856 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
857 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
858 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
859 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
860 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
861 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
862 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
863 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
864 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
865 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
866 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
867 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
868 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
869 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
870 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
871 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
872 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
873 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
874 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
875 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
876 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
877 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
878 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
879 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
880 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
881 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
882 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
883 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
884 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
885 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
886 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
887 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
888 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
889 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
890 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
891 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
892 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
893 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
894 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
895 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
896 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
897 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
898 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
899 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
900 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
901 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
902 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
903 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
904 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
905 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
906 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
907 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
908 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
909 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
910 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
911 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
912 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
913 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
914 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
915 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
916 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
917 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
918 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
919 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
920 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
921 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
922 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
923 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
924 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
925 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
926 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
927 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
928 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
929 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
930 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
931 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
932 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
933 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
934 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
935 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
936 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
937 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
938 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
939 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
940 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
941 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
942 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
943 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
944 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
945 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
946 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
947 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
948 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
949 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
950 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
951 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
952 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
953 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
954 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
955 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
956 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
957 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
958 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
959 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
960 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
961 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
962 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
963 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
964 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
965 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
966 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
967 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
968 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
969 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
970 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
971 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
972 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
973 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
974 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
975 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
976 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
977 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
978 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
979 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
980 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
981 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
982 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
983 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
984 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
985 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
986 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
987 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
988 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
989 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
990 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
991 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
992 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
993 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
994 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
995 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
996 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
997 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
998 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
999 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1000 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1001 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1002 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1003 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1004 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1005 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1006 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1007 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1008 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1009 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1010 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1011 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1012 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1013 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1014 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1015 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1016 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1017 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1018 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1019 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1020 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1021 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1022 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1023 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1024 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1025 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1026 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1027 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1028 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1029 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1030 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1031 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1032 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1033 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1034 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1035 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1036 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1037 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1038 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1039 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1040 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1041 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1042 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1043 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1044 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1045 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1046 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1047 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1048 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1049 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1050 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1051 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1052 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1053 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1054 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1055 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1056 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1057 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1058 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1059 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1060 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1061 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1062 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1063 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1064 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1065 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1066 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1067 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1068 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1069 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1070 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1071 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1072 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1073 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1074 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1075 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1076 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1077 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1078 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1079 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1080 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1081 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1082 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1083 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1084 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1085 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1086 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1087 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1088 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1089 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1090 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1091 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1092 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1093 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1094 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1095 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1096 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1097 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1098 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1099 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1100 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1101 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1102 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1103 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1104 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1105 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1106 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1107 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1108 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1109 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1110 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1111 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1112 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1113 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1114 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1115 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1116 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1117 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1118 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1119 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1120 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1121 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1122 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1123 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1124 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1125 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1126 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1127 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1128 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1129 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1130 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1131 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1132 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1133 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1134 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1135 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1136 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1137 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1138 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1139 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1140 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1141 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1142 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1143 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1144 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1145 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1146 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1147 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1148 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1149 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1150 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1151 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1152 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1153 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1154 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1155 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1156 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1157 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1158 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1159 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1160 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1161 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1162 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1163 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1164 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1165 |
+
"/data/internal/anon_tokyo/togawa_group.wav",
|
1166 |
+
"/data/internal/anon_tokyo/togawa_group.wav"
|
1167 |
+
],
|
1168 |
+
"alignment_shifts": [
|
1169 |
+
-4,
|
1170 |
+
68,
|
1171 |
+
-44040,
|
1172 |
+
0,
|
1173 |
+
5730,
|
1174 |
+
-287164,
|
1175 |
+
24,
|
1176 |
+
78,
|
1177 |
+
15432,
|
1178 |
+
402,
|
1179 |
+
-2,
|
1180 |
+
0,
|
1181 |
+
63,
|
1182 |
+
9542,
|
1183 |
+
-3,
|
1184 |
+
-2,
|
1185 |
+
76,
|
1186 |
+
3072,
|
1187 |
+
-59,
|
1188 |
+
0,
|
1189 |
+
64,
|
1190 |
+
-3,
|
1191 |
+
-17,
|
1192 |
+
37,
|
1193 |
+
79,
|
1194 |
+
121,
|
1195 |
+
124,
|
1196 |
+
28,
|
1197 |
+
-14,
|
1198 |
+
2,
|
1199 |
+
9668,
|
1200 |
+
8820,
|
1201 |
+
30,
|
1202 |
+
-104,
|
1203 |
+
67,
|
1204 |
+
-18,
|
1205 |
+
15066,
|
1206 |
+
-3,
|
1207 |
+
138,
|
1208 |
+
-21,
|
1209 |
+
-2,
|
1210 |
+
36,
|
1211 |
+
439,
|
1212 |
+
-3,
|
1213 |
+
141,
|
1214 |
+
77,
|
1215 |
+
-32,
|
1216 |
+
3608,
|
1217 |
+
321,
|
1218 |
+
1,
|
1219 |
+
-4,
|
1220 |
+
0,
|
1221 |
+
-28,
|
1222 |
+
-133515,
|
1223 |
+
-6,
|
1224 |
+
-11,
|
1225 |
+
-260006,
|
1226 |
+
60,
|
1227 |
+
-33,
|
1228 |
+
-44,
|
1229 |
+
-45,
|
1230 |
+
7,
|
1231 |
+
-7,
|
1232 |
+
219,
|
1233 |
+
-316,
|
1234 |
+
0,
|
1235 |
+
-35,
|
1236 |
+
-98742,
|
1237 |
+
-6,
|
1238 |
+
-5,
|
1239 |
+
78,
|
1240 |
+
0,
|
1241 |
+
-6,
|
1242 |
+
0,
|
1243 |
+
0,
|
1244 |
+
67,
|
1245 |
+
-12,
|
1246 |
+
15495,
|
1247 |
+
69,
|
1248 |
+
15429,
|
1249 |
+
-28645,
|
1250 |
+
-108,
|
1251 |
+
-4,
|
1252 |
+
95,
|
1253 |
+
2991,
|
1254 |
+
19,
|
1255 |
+
-4,
|
1256 |
+
-2,
|
1257 |
+
113,
|
1258 |
+
-3,
|
1259 |
+
1,
|
1260 |
+
61,
|
1261 |
+
5292,
|
1262 |
+
34,
|
1263 |
+
71,
|
1264 |
+
67,
|
1265 |
+
530,
|
1266 |
+
165,
|
1267 |
+
2,
|
1268 |
+
46,
|
1269 |
+
-3,
|
1270 |
+
-6,
|
1271 |
+
69,
|
1272 |
+
75,
|
1273 |
+
66,
|
1274 |
+
0,
|
1275 |
+
0,
|
1276 |
+
2872,
|
1277 |
+
35,
|
1278 |
+
35,
|
1279 |
+
-3,
|
1280 |
+
35,
|
1281 |
+
37,
|
1282 |
+
0,
|
1283 |
+
-2,
|
1284 |
+
43,
|
1285 |
+
-4,
|
1286 |
+
-2,
|
1287 |
+
67,
|
1288 |
+
-6,
|
1289 |
+
728,
|
1290 |
+
22091,
|
1291 |
+
0,
|
1292 |
+
1,
|
1293 |
+
-7,
|
1294 |
+
15432,
|
1295 |
+
0,
|
1296 |
+
59,
|
1297 |
+
0,
|
1298 |
+
-4,
|
1299 |
+
52,
|
1300 |
+
30,
|
1301 |
+
-7,
|
1302 |
+
0,
|
1303 |
+
-24,
|
1304 |
+
-167543,
|
1305 |
+
67,
|
1306 |
+
73,
|
1307 |
+
-2,
|
1308 |
+
-220,
|
1309 |
+
60,
|
1310 |
+
-70562,
|
1311 |
+
36,
|
1312 |
+
2,
|
1313 |
+
123,
|
1314 |
+
145,
|
1315 |
+
-1450,
|
1316 |
+
-16962,
|
1317 |
+
609,
|
1318 |
+
36,
|
1319 |
+
69,
|
1320 |
+
-801,
|
1321 |
+
-2,
|
1322 |
+
4,
|
1323 |
+
6,
|
1324 |
+
-2,
|
1325 |
+
75,
|
1326 |
+
70,
|
1327 |
+
-4,
|
1328 |
+
-2,
|
1329 |
+
82,
|
1330 |
+
53,
|
1331 |
+
32,
|
1332 |
+
128,
|
1333 |
+
-222,
|
1334 |
+
-28226,
|
1335 |
+
3557,
|
1336 |
+
15432,
|
1337 |
+
-6,
|
1338 |
+
-52666,
|
1339 |
+
70,
|
1340 |
+
-7,
|
1341 |
+
40,
|
1342 |
+
65,
|
1343 |
+
-3,
|
1344 |
+
8,
|
1345 |
+
74,
|
1346 |
+
11,
|
1347 |
+
5,
|
1348 |
+
-1093343,
|
1349 |
+
-129130,
|
1350 |
+
-30,
|
1351 |
+
34,
|
1352 |
+
-36,
|
1353 |
+
15563,
|
1354 |
+
53,
|
1355 |
+
-3,
|
1356 |
+
67,
|
1357 |
+
36,
|
1358 |
+
116,
|
1359 |
+
32,
|
1360 |
+
21,
|
1361 |
+
-3,
|
1362 |
+
5,
|
1363 |
+
389,
|
1364 |
+
4410,
|
1365 |
+
82,
|
1366 |
+
15525,
|
1367 |
+
-6,
|
1368 |
+
100,
|
1369 |
+
37,
|
1370 |
+
15512,
|
1371 |
+
-2,
|
1372 |
+
-6,
|
1373 |
+
34,
|
1374 |
+
34,
|
1375 |
+
99,
|
1376 |
+
-80,
|
1377 |
+
4,
|
1378 |
+
-2,
|
1379 |
+
-2,
|
1380 |
+
-22,
|
1381 |
+
269,
|
1382 |
+
4471,
|
1383 |
+
15543,
|
1384 |
+
3,
|
1385 |
+
1,
|
1386 |
+
593,
|
1387 |
+
35,
|
1388 |
+
37,
|
1389 |
+
87,
|
1390 |
+
120,
|
1391 |
+
-7,
|
1392 |
+
-8,
|
1393 |
+
8897,
|
1394 |
+
-6,
|
1395 |
+
-361965,
|
1396 |
+
394,
|
1397 |
+
430,
|
1398 |
+
-154363,
|
1399 |
+
-13172,
|
1400 |
+
40,
|
1401 |
+
135,
|
1402 |
+
-2,
|
1403 |
+
-9,
|
1404 |
+
69,
|
1405 |
+
-2,
|
1406 |
+
3593,
|
1407 |
+
473,
|
1408 |
+
-2181,
|
1409 |
+
-11364,
|
1410 |
+
-70,
|
1411 |
+
-4,
|
1412 |
+
-76,
|
1413 |
+
-2,
|
1414 |
+
-16,
|
1415 |
+
62,
|
1416 |
+
-6,
|
1417 |
+
-12239,
|
1418 |
+
34,
|
1419 |
+
8818,
|
1420 |
+
-77,
|
1421 |
+
-2,
|
1422 |
+
15,
|
1423 |
+
-2,
|
1424 |
+
-2,
|
1425 |
+
29,
|
1426 |
+
2883,
|
1427 |
+
-2,
|
1428 |
+
6613,
|
1429 |
+
-269138,
|
1430 |
+
6614,
|
1431 |
+
-7067,
|
1432 |
+
340,
|
1433 |
+
-160580,
|
1434 |
+
137,
|
1435 |
+
37,
|
1436 |
+
-99,
|
1437 |
+
35,
|
1438 |
+
-114544,
|
1439 |
+
-113888,
|
1440 |
+
-33,
|
1441 |
+
-176504,
|
1442 |
+
15500,
|
1443 |
+
15437,
|
1444 |
+
49,
|
1445 |
+
-42,
|
1446 |
+
-176364,
|
1447 |
+
28,
|
1448 |
+
-4,
|
1449 |
+
0,
|
1450 |
+
63,
|
1451 |
+
-6,
|
1452 |
+
-3,
|
1453 |
+
-7,
|
1454 |
+
68,
|
1455 |
+
52,
|
1456 |
+
59,
|
1457 |
+
47,
|
1458 |
+
70,
|
1459 |
+
395,
|
1460 |
+
-2,
|
1461 |
+
164,
|
1462 |
+
38,
|
1463 |
+
-17,
|
1464 |
+
137,
|
1465 |
+
40,
|
1466 |
+
6,
|
1467 |
+
2,
|
1468 |
+
140,
|
1469 |
+
40,
|
1470 |
+
-40,
|
1471 |
+
376,
|
1472 |
+
-3,
|
1473 |
+
61,
|
1474 |
+
458,
|
1475 |
+
-182879,
|
1476 |
+
-110896,
|
1477 |
+
3,
|
1478 |
+
34,
|
1479 |
+
-16,
|
1480 |
+
80,
|
1481 |
+
68,
|
1482 |
+
-2,
|
1483 |
+
0,
|
1484 |
+
28,
|
1485 |
+
129,
|
1486 |
+
166,
|
1487 |
+
1449,
|
1488 |
+
1,
|
1489 |
+
-161984,
|
1490 |
+
363,
|
1491 |
+
34,
|
1492 |
+
135,
|
1493 |
+
34,
|
1494 |
+
-124,
|
1495 |
+
36,
|
1496 |
+
38,
|
1497 |
+
72,
|
1498 |
+
-123590,
|
1499 |
+
-45411,
|
1500 |
+
67,
|
1501 |
+
-96332,
|
1502 |
+
-96333,
|
1503 |
+
63,
|
1504 |
+
-2,
|
1505 |
+
39,
|
1506 |
+
-20,
|
1507 |
+
399,
|
1508 |
+
34,
|
1509 |
+
37,
|
1510 |
+
-7,
|
1511 |
+
69,
|
1512 |
+
-6,
|
1513 |
+
0,
|
1514 |
+
3,
|
1515 |
+
2933,
|
1516 |
+
-153040,
|
1517 |
+
-153041,
|
1518 |
+
-3,
|
1519 |
+
-2,
|
1520 |
+
66,
|
1521 |
+
-72452,
|
1522 |
+
-3,
|
1523 |
+
-2,
|
1524 |
+
-6,
|
1525 |
+
-7,
|
1526 |
+
1,
|
1527 |
+
-147889,
|
1528 |
+
37,
|
1529 |
+
0,
|
1530 |
+
0,
|
1531 |
+
-2,
|
1532 |
+
40,
|
1533 |
+
-3,
|
1534 |
+
44,
|
1535 |
+
76,
|
1536 |
+
-14,
|
1537 |
+
49,
|
1538 |
+
81,
|
1539 |
+
34,
|
1540 |
+
70,
|
1541 |
+
63,
|
1542 |
+
68,
|
1543 |
+
0,
|
1544 |
+
61,
|
1545 |
+
0,
|
1546 |
+
0,
|
1547 |
+
62,
|
1548 |
+
48,
|
1549 |
+
58,
|
1550 |
+
63,
|
1551 |
+
-23,
|
1552 |
+
-23,
|
1553 |
+
-2
|
1554 |
+
],
|
1555 |
+
"params_original_shapes": [
|
1556 |
+
[],
|
1557 |
+
[],
|
1558 |
+
[],
|
1559 |
+
[],
|
1560 |
+
[],
|
1561 |
+
[],
|
1562 |
+
[],
|
1563 |
+
[],
|
1564 |
+
[],
|
1565 |
+
[],
|
1566 |
+
[],
|
1567 |
+
[],
|
1568 |
+
[],
|
1569 |
+
[],
|
1570 |
+
[],
|
1571 |
+
[],
|
1572 |
+
[],
|
1573 |
+
[
|
1574 |
+
1
|
1575 |
+
],
|
1576 |
+
[],
|
1577 |
+
[],
|
1578 |
+
[],
|
1579 |
+
[],
|
1580 |
+
[],
|
1581 |
+
[
|
1582 |
+
1
|
1583 |
+
],
|
1584 |
+
[],
|
1585 |
+
[],
|
1586 |
+
[],
|
1587 |
+
[],
|
1588 |
+
[],
|
1589 |
+
[],
|
1590 |
+
[],
|
1591 |
+
[
|
1592 |
+
6,
|
1593 |
+
2
|
1594 |
+
],
|
1595 |
+
[
|
1596 |
+
2,
|
1597 |
+
6
|
1598 |
+
],
|
1599 |
+
[
|
1600 |
+
49,
|
1601 |
+
1
|
1602 |
+
],
|
1603 |
+
[
|
1604 |
+
6,
|
1605 |
+
6
|
1606 |
+
],
|
1607 |
+
[],
|
1608 |
+
[],
|
1609 |
+
[],
|
1610 |
+
[],
|
1611 |
+
[],
|
1612 |
+
[],
|
1613 |
+
[],
|
1614 |
+
[],
|
1615 |
+
[],
|
1616 |
+
[],
|
1617 |
+
[]
|
1618 |
+
],
|
1619 |
+
"params_keys": [
|
1620 |
+
"0.params.gain",
|
1621 |
+
"0.params.parametrizations.freq.original",
|
1622 |
+
"0.params.parametrizations.Q.original",
|
1623 |
+
"1.params.gain",
|
1624 |
+
"1.params.parametrizations.freq.original",
|
1625 |
+
"1.params.parametrizations.Q.original",
|
1626 |
+
"2.params.gain",
|
1627 |
+
"2.params.parametrizations.freq.original",
|
1628 |
+
"3.params.gain",
|
1629 |
+
"3.params.parametrizations.freq.original",
|
1630 |
+
"4.params.parametrizations.freq.original",
|
1631 |
+
"4.params.parametrizations.Q.original",
|
1632 |
+
"5.params.parametrizations.freq.original",
|
1633 |
+
"5.params.parametrizations.Q.original",
|
1634 |
+
"6.params.cmp_th",
|
1635 |
+
"6.params.exp_th",
|
1636 |
+
"6.params.make_up",
|
1637 |
+
"6.params.parametrizations.lookahead.original",
|
1638 |
+
"6.params.parametrizations.at.original",
|
1639 |
+
"6.params.parametrizations.rt.original",
|
1640 |
+
"6.params.parametrizations.avg_coef.original",
|
1641 |
+
"6.params.parametrizations.cmp_ratio.original",
|
1642 |
+
"6.params.parametrizations.exp_ratio.original",
|
1643 |
+
"7.params.parametrizations.sends_0.original",
|
1644 |
+
"7.effects.0.params.parametrizations.delay.original",
|
1645 |
+
"7.effects.0.params.parametrizations.feedback.original",
|
1646 |
+
"7.effects.0.params.parametrizations.gain.original",
|
1647 |
+
"7.effects.0.eq.params.parametrizations.freq.original",
|
1648 |
+
"7.effects.0.eq.params.parametrizations.Q.original",
|
1649 |
+
"7.effects.0.odd_pan.params.parametrizations.pan.original",
|
1650 |
+
"7.effects.0.even_pan.params.parametrizations.pan.original",
|
1651 |
+
"7.effects.1.params.b",
|
1652 |
+
"7.effects.1.params.c",
|
1653 |
+
"7.effects.1.params.parametrizations.gamma.original",
|
1654 |
+
"7.effects.1.params.parametrizations.U.original",
|
1655 |
+
"7.effects.1.eq.0.params.gain",
|
1656 |
+
"7.effects.1.eq.0.params.parametrizations.freq.original",
|
1657 |
+
"7.effects.1.eq.0.params.parametrizations.Q.original",
|
1658 |
+
"7.effects.1.eq.1.params.gain",
|
1659 |
+
"7.effects.1.eq.1.params.parametrizations.freq.original",
|
1660 |
+
"7.effects.1.eq.1.params.parametrizations.Q.original",
|
1661 |
+
"7.effects.1.eq.2.params.gain",
|
1662 |
+
"7.effects.1.eq.2.params.parametrizations.freq.original",
|
1663 |
+
"7.effects.1.eq.3.params.gain",
|
1664 |
+
"7.effects.1.eq.3.params.parametrizations.freq.original",
|
1665 |
+
"7.pan.params.parametrizations.pan.original"
|
1666 |
+
],
|
1667 |
+
"problematic_runs": {
|
1668 |
+
"terminated": [],
|
1669 |
+
"loss_above_4.0": [
|
1670 |
+
[
|
1671 |
+
"anon_tokyo/run_1",
|
1672 |
+
6.585290908813477
|
1673 |
+
],
|
1674 |
+
[
|
1675 |
+
"anon_tokyo/run_1",
|
1676 |
+
4.723783016204834
|
1677 |
+
]
|
1678 |
+
],
|
1679 |
+
"not_converged": [],
|
1680 |
+
"fluctuated_above_0.2": [
|
1681 |
+
[
|
1682 |
+
"anon_tokyo/run_1",
|
1683 |
+
0.49335169792175293
|
1684 |
+
],
|
1685 |
+
[
|
1686 |
+
"anon_tokyo/run_1",
|
1687 |
+
0.41164231300354004
|
1688 |
+
],
|
1689 |
+
[
|
1690 |
+
"anon_tokyo/run_1",
|
1691 |
+
0.5299015045166016
|
1692 |
+
]
|
1693 |
+
]
|
1694 |
+
}
|
1695 |
+
}
|
presets/medleydb/info.json
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"runs": [
|
3 |
+
"~/processed/AClassicEducation_NightOwl/AClassicEducation_NightOwl_STEM_08/run_0",
|
4 |
+
"~/processed/AlexanderRoss_GoodbyeBolero/AlexanderRoss_GoodbyeBolero_STEM_06/run_0",
|
5 |
+
"~/processed/AlexanderRoss_VelvetCurtain/AlexanderRoss_VelvetCurtain_STEM_06/run_0",
|
6 |
+
"~/processed/Auctioneer_OurFutureFaces/Auctioneer_OurFutureFaces_STEM_08/run_0",
|
7 |
+
"~/processed/AvaLuna_Waterduct/AvaLuna_Waterduct_STEM_08/run_0",
|
8 |
+
"~/processed/BigTroubles_Phantom/BigTroubles_Phantom_STEM_04/run_0",
|
9 |
+
"~/processed/BrandonWebster_DontHearAThing/BrandonWebster_DontHearAThing_STEM_02/run_0",
|
10 |
+
"~/processed/BrandonWebster_DontHearAThing/BrandonWebster_DontHearAThing_STEM_01/run_0",
|
11 |
+
"~/processed/BrandonWebster_YesSirICanFly/BrandonWebster_YesSirICanFly_STEM_02/run_0",
|
12 |
+
"~/processed/CatMartino_IPromise/CatMartino_IPromise_STEM_06/run_0",
|
13 |
+
"~/processed/ClaraBerryAndWooldog_AirTraffic/ClaraBerryAndWooldog_AirTraffic_STEM_07/run_0",
|
14 |
+
"~/processed/ClaraBerryAndWooldog_AirTraffic/ClaraBerryAndWooldog_AirTraffic_STEM_08/run_0",
|
15 |
+
"~/processed/ClaraBerryAndWooldog_Boys/ClaraBerryAndWooldog_Boys_STEM_06/run_0",
|
16 |
+
"~/processed/ClaraBerryAndWooldog_Stella/ClaraBerryAndWooldog_Stella_STEM_07/run_0",
|
17 |
+
"~/processed/ClaraBerryAndWooldog_WaltzForMyVictims/ClaraBerryAndWooldog_WaltzForMyVictims_STEM_05/run_0",
|
18 |
+
"~/processed/DeadMilkmen_PrisonersCinema/DeadMilkmen_PrisonersCinema_STEM_12/run_0",
|
19 |
+
"~/processed/Debussy_LenfantProdigue/Debussy_LenfantProdigue_STEM_01/run_0",
|
20 |
+
"~/processed/DreamersOfTheGhetto_HeavyLove/DreamersOfTheGhetto_HeavyLove_STEM_08/run_0",
|
21 |
+
"~/processed/FacesOnFilm_WaitingForGa/FacesOnFilm_WaitingForGa_STEM_03/run_0",
|
22 |
+
"~/processed/FamilyBand_Again/FamilyBand_Again_STEM_09/run_0",
|
23 |
+
"~/processed/Handel_TornamiAVagheggiar/Handel_TornamiAVagheggiar_STEM_01/run_0",
|
24 |
+
"~/processed/HeladoNegro_MitadDelMundo/HeladoNegro_MitadDelMundo_STEM_08/run_0",
|
25 |
+
"~/processed/HeladoNegro_MitadDelMundo/HeladoNegro_MitadDelMundo_STEM_03/run_0",
|
26 |
+
"~/processed/HopAlong_SisterCities/HopAlong_SisterCities_STEM_07/run_0",
|
27 |
+
"~/processed/LizNelson_Coldwar/LizNelson_Coldwar_STEM_02/run_0",
|
28 |
+
"~/processed/LizNelson_ImComingHome/LizNelson_ImComingHome_STEM_02/run_0",
|
29 |
+
"~/processed/LizNelson_ImComingHome/LizNelson_ImComingHome_STEM_03/run_0",
|
30 |
+
"~/processed/LizNelson_ImComingHome/LizNelson_ImComingHome_STEM_04/run_0",
|
31 |
+
"~/processed/LizNelson_ImComingHome/LizNelson_ImComingHome_STEM_01/run_0",
|
32 |
+
"~/processed/LizNelson_Rainfall/LizNelson_Rainfall_STEM_01/run_0",
|
33 |
+
"~/processed/LizNelson_Rainfall/LizNelson_Rainfall_STEM_03/run_0",
|
34 |
+
"~/processed/LizNelson_Rainfall/LizNelson_Rainfall_STEM_02/run_0",
|
35 |
+
"~/processed/MatthewEntwistle_DontYouEver/MatthewEntwistle_DontYouEver_STEM_07/run_0",
|
36 |
+
"~/processed/MatthewEntwistle_Lontano/MatthewEntwistle_Lontano_STEM_02/run_0",
|
37 |
+
"~/processed/Meaxic_TakeAStep/Meaxic_TakeAStep_STEM_08/run_0",
|
38 |
+
"~/processed/Meaxic_TakeAStep/Meaxic_TakeAStep_STEM_04/run_0",
|
39 |
+
"~/processed/MidnightBlue_HuntingSeason/MidnightBlue_HuntingSeason_STEM_01/run_0",
|
40 |
+
"~/processed/MidnightBlue_HuntingSeason/MidnightBlue_HuntingSeason_STEM_02/run_0",
|
41 |
+
"~/processed/MidnightBlue_StarsAreScreaming/MidnightBlue_StarsAreScreaming_STEM_06/run_0",
|
42 |
+
"~/processed/MidnightBlue_StarsAreScreaming/MidnightBlue_StarsAreScreaming_STEM_07/run_0",
|
43 |
+
"~/processed/Mozart_BesterJungling/Mozart_BesterJungling_STEM_01/run_0",
|
44 |
+
"~/processed/Mozart_DiesBildnis/Mozart_DiesBildnis_STEM_01/run_0",
|
45 |
+
"~/processed/MusicDelta_80sRock/MusicDelta_80sRock_STEM_04/run_0",
|
46 |
+
"~/processed/MusicDelta_Beatles/MusicDelta_Beatles_STEM_08/run_0",
|
47 |
+
"~/processed/MusicDelta_Beatles/MusicDelta_Beatles_STEM_07/run_0",
|
48 |
+
"~/processed/MusicDelta_Britpop/MusicDelta_Britpop_STEM_07/run_0",
|
49 |
+
"~/processed/MusicDelta_Britpop/MusicDelta_Britpop_STEM_08/run_0",
|
50 |
+
"~/processed/MusicDelta_Country1/MusicDelta_Country1_STEM_05/run_1",
|
51 |
+
"~/processed/MusicDelta_Country2/MusicDelta_Country2_STEM_05/run_0",
|
52 |
+
"~/processed/MusicDelta_Disco/MusicDelta_Disco_STEM_04/run_0",
|
53 |
+
"~/processed/MusicDelta_Gospel/MusicDelta_Gospel_STEM_06/run_0",
|
54 |
+
"~/processed/MusicDelta_Grunge/MusicDelta_Grunge_STEM_05/run_0",
|
55 |
+
"~/processed/MusicDelta_Hendrix/MusicDelta_Hendrix_STEM_04/run_0",
|
56 |
+
"~/processed/MusicDelta_Punk/MusicDelta_Punk_STEM_04/run_0",
|
57 |
+
"~/processed/MusicDelta_Reggae/MusicDelta_Reggae_STEM_04/run_0",
|
58 |
+
"~/processed/MusicDelta_Rock/MusicDelta_Rock_STEM_05/run_0",
|
59 |
+
"~/processed/MusicDelta_Rockabilly/MusicDelta_Rockabilly_STEM_05/run_0",
|
60 |
+
"~/processed/MutualBenefit_NotForNothing/MutualBenefit_NotForNothing_STEM_06/run_0",
|
61 |
+
"~/processed/PortStWillow_StayEven/PortStWillow_StayEven_STEM_08/run_0",
|
62 |
+
"~/processed/Schubert_Erstarrung/Schubert_Erstarrung_STEM_01/run_0",
|
63 |
+
"~/processed/Schumann_Mignon/Schumann_Mignon_STEM_02/run_0",
|
64 |
+
"~/processed/Snowmine_Curfews/Snowmine_Curfews_STEM_03/run_0",
|
65 |
+
"~/processed/SongYiJeon_TwoMoons/SongYiJeon_TwoMoons_STEM_01/run_0",
|
66 |
+
"~/processed/StevenClark_Bounty/StevenClark_Bounty_STEM_08/run_0",
|
67 |
+
"~/processed/StrandOfOaks_Spacestation/StrandOfOaks_Spacestation_STEM_04/run_0",
|
68 |
+
"~/processed/TheKitchenettes_Alive/TheKitchenettes_Alive_STEM_01/run_0",
|
69 |
+
"~/processed/TheScarletBrand_LesFleursDuMal/TheScarletBrand_LesFleursDuMal_STEM_08/run_0",
|
70 |
+
"~/processed/TleilaxEnsemble_Late/TleilaxEnsemble_Late_STEM_04/run_0",
|
71 |
+
"~/processed/TleilaxEnsemble_Late/TleilaxEnsemble_Late_STEM_05/run_0",
|
72 |
+
"~/processed/TleilaxEnsemble_MelancholyFlowers/TleilaxEnsemble_MelancholyFlowers_STEM_04/run_0",
|
73 |
+
"~/processed/TleilaxEnsemble_MelancholyFlowers/TleilaxEnsemble_MelancholyFlowers_STEM_05/run_0",
|
74 |
+
"~/processed/Torres_NewSkin/Torres_NewSkin_STEM_02/run_0",
|
75 |
+
"~/processed/Torres_NewSkin/Torres_NewSkin_STEM_05/run_0",
|
76 |
+
"~/processed/Torres_NewSkin/Torres_NewSkin_STEM_10/run_0",
|
77 |
+
"~/processed/Torres_NewSkin/Torres_NewSkin_STEM_03/run_0",
|
78 |
+
"~/processed/Wolf_DieBekherte/Wolf_DieBekherte_STEM_01/run_0"
|
79 |
+
],
|
80 |
+
"dry_files": [
|
81 |
+
"/data/medley1/v1/Audio/AClassicEducation_NightOwl/AClassicEducation_NightOwl_RAW/AClassicEducation_NightOwl_RAW_08_01.wav",
|
82 |
+
"/data/medley1/v1/Audio/Auctioneer_OurFutureFaces/Auctioneer_OurFutureFaces_RAW/Auctioneer_OurFutureFaces_RAW_08_01.wav",
|
83 |
+
"/data/medley1/v1/Audio/AvaLuna_Waterduct/AvaLuna_Waterduct_RAW/AvaLuna_Waterduct_RAW_08_01.wav",
|
84 |
+
"/data/medley1/v1/Audio/BigTroubles_Phantom/BigTroubles_Phantom_RAW/BigTroubles_Phantom_RAW_04_01.wav",
|
85 |
+
"/data/medley1/v1/Audio/BrandonWebster_DontHearAThing/BrandonWebster_DontHearAThing_RAW/BrandonWebster_DontHearAThing_RAW_02_01.wav",
|
86 |
+
"/data/medley1/v1/Audio/BrandonWebster_DontHearAThing/BrandonWebster_DontHearAThing_RAW/BrandonWebster_DontHearAThing_RAW_01_01.wav",
|
87 |
+
"/data/medley1/v1/Audio/BrandonWebster_YesSirICanFly/BrandonWebster_YesSirICanFly_RAW/BrandonWebster_YesSirICanFly_RAW_02_01.wav",
|
88 |
+
"/data/medley1/v2/Audio/CatMartino_IPromise/CatMartino_IPromise_RAW/CatMartino_IPromise_RAW_06_01.wav",
|
89 |
+
"/data/medley1/v1/Audio/ClaraBerryAndWooldog_AirTraffic/ClaraBerryAndWooldog_AirTraffic_RAW/ClaraBerryAndWooldog_AirTraffic_RAW_07_01.wav",
|
90 |
+
"/data/medley1/v1/Audio/ClaraBerryAndWooldog_AirTraffic/ClaraBerryAndWooldog_AirTraffic_RAW/ClaraBerryAndWooldog_AirTraffic_RAW_08_01.wav",
|
91 |
+
"/data/medley1/v1/Audio/ClaraBerryAndWooldog_Boys/ClaraBerryAndWooldog_Boys_RAW/ClaraBerryAndWooldog_Boys_RAW_06_01.wav",
|
92 |
+
"/data/medley1/v1/Audio/ClaraBerryAndWooldog_Stella/ClaraBerryAndWooldog_Stella_RAW/ClaraBerryAndWooldog_Stella_RAW_07_01.wav",
|
93 |
+
"/data/medley1/v1/Audio/ClaraBerryAndWooldog_WaltzForMyVictims/ClaraBerryAndWooldog_WaltzForMyVictims_RAW/ClaraBerryAndWooldog_WaltzForMyVictims_RAW_05_01.wav",
|
94 |
+
"/data/medley1/v2/Audio/DeadMilkmen_PrisonersCinema/DeadMilkmen_PrisonersCinema_RAW/DeadMilkmen_PrisonersCinema_RAW_12_01.wav",
|
95 |
+
"/data/medley1/v1/Audio/DreamersOfTheGhetto_HeavyLove/DreamersOfTheGhetto_HeavyLove_RAW/DreamersOfTheGhetto_HeavyLove_RAW_08_01.wav",
|
96 |
+
"/data/medley1/v1/Audio/FacesOnFilm_WaitingForGa/FacesOnFilm_WaitingForGa_RAW/FacesOnFilm_WaitingForGa_RAW_03_01.wav",
|
97 |
+
"/data/medley1/v1/Audio/FamilyBand_Again/FamilyBand_Again_RAW/FamilyBand_Again_RAW_09_01.wav",
|
98 |
+
"/data/medley1/v1/Audio/Handel_TornamiAVagheggiar/Handel_TornamiAVagheggiar_RAW/Handel_TornamiAVagheggiar_RAW_01_01.wav",
|
99 |
+
"/data/medley1/v1/Audio/HeladoNegro_MitadDelMundo/HeladoNegro_MitadDelMundo_RAW/HeladoNegro_MitadDelMundo_RAW_08_01.wav",
|
100 |
+
"/data/medley1/v1/Audio/HeladoNegro_MitadDelMundo/HeladoNegro_MitadDelMundo_RAW/HeladoNegro_MitadDelMundo_RAW_03_01.wav",
|
101 |
+
"/data/medley1/v1/Audio/HopAlong_SisterCities/HopAlong_SisterCities_RAW/HopAlong_SisterCities_RAW_07_01.wav",
|
102 |
+
"/data/medley1/v1/Audio/LizNelson_Coldwar/LizNelson_Coldwar_RAW/LizNelson_Coldwar_RAW_02_01.wav",
|
103 |
+
"/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_RAW/LizNelson_ImComingHome_RAW_02_01.wav",
|
104 |
+
"/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_RAW/LizNelson_ImComingHome_RAW_03_01.wav",
|
105 |
+
"/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_RAW/LizNelson_ImComingHome_RAW_04_01.wav",
|
106 |
+
"/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_RAW/LizNelson_ImComingHome_RAW_01_01.wav",
|
107 |
+
"/data/medley1/v1/Audio/LizNelson_Rainfall/LizNelson_Rainfall_RAW/LizNelson_Rainfall_RAW_01_01.wav",
|
108 |
+
"/data/medley1/v1/Audio/LizNelson_Rainfall/LizNelson_Rainfall_RAW/LizNelson_Rainfall_RAW_03_01.wav",
|
109 |
+
"/data/medley1/v1/Audio/LizNelson_Rainfall/LizNelson_Rainfall_RAW/LizNelson_Rainfall_RAW_02_01.wav",
|
110 |
+
"/data/medley1/v1/Audio/MatthewEntwistle_DontYouEver/MatthewEntwistle_DontYouEver_RAW/MatthewEntwistle_DontYouEver_RAW_07_01.wav",
|
111 |
+
"/data/medley1/v1/Audio/MatthewEntwistle_Lontano/MatthewEntwistle_Lontano_RAW/MatthewEntwistle_Lontano_RAW_02_01.wav",
|
112 |
+
"/data/medley1/v1/Audio/Meaxic_TakeAStep/Meaxic_TakeAStep_RAW/Meaxic_TakeAStep_RAW_08_01.wav",
|
113 |
+
"/data/medley1/v1/Audio/Meaxic_TakeAStep/Meaxic_TakeAStep_RAW/Meaxic_TakeAStep_RAW_04_01.wav",
|
114 |
+
"/data/medley1/v2/Audio/MidnightBlue_HuntingSeason/MidnightBlue_HuntingSeason_RAW/MidnightBlue_HuntingSeason_RAW_01_01.wav",
|
115 |
+
"/data/medley1/v2/Audio/MidnightBlue_HuntingSeason/MidnightBlue_HuntingSeason_RAW/MidnightBlue_HuntingSeason_RAW_02_01.wav",
|
116 |
+
"/data/medley1/v2/Audio/MidnightBlue_StarsAreScreaming/MidnightBlue_StarsAreScreaming_RAW/MidnightBlue_StarsAreScreaming_RAW_06_01.wav",
|
117 |
+
"/data/medley1/v2/Audio/MidnightBlue_StarsAreScreaming/MidnightBlue_StarsAreScreaming_RAW/MidnightBlue_StarsAreScreaming_RAW_07_01.wav",
|
118 |
+
"/data/medley1/v1/Audio/Mozart_BesterJungling/Mozart_BesterJungling_RAW/Mozart_BesterJungling_RAW_01_01.wav",
|
119 |
+
"/data/medley1/v1/Audio/MusicDelta_80sRock/MusicDelta_80sRock_RAW/MusicDelta_80sRock_RAW_04_01.wav",
|
120 |
+
"/data/medley1/v1/Audio/MusicDelta_Beatles/MusicDelta_Beatles_RAW/MusicDelta_Beatles_RAW_08_01.wav",
|
121 |
+
"/data/medley1/v1/Audio/MusicDelta_Beatles/MusicDelta_Beatles_RAW/MusicDelta_Beatles_RAW_07_01.wav",
|
122 |
+
"/data/medley1/v1/Audio/MusicDelta_Britpop/MusicDelta_Britpop_RAW/MusicDelta_Britpop_RAW_07_01.wav",
|
123 |
+
"/data/medley1/v1/Audio/MusicDelta_Britpop/MusicDelta_Britpop_RAW/MusicDelta_Britpop_RAW_08_01.wav",
|
124 |
+
"/data/medley1/v1/Audio/MusicDelta_Country1/MusicDelta_Country1_RAW/MusicDelta_Country1_RAW_05_01.wav",
|
125 |
+
"/data/medley1/v1/Audio/MusicDelta_Country2/MusicDelta_Country2_RAW/MusicDelta_Country2_RAW_05_01.wav",
|
126 |
+
"/data/medley1/v1/Audio/MusicDelta_Disco/MusicDelta_Disco_RAW/MusicDelta_Disco_RAW_04_01.wav",
|
127 |
+
"/data/medley1/v1/Audio/MusicDelta_Gospel/MusicDelta_Gospel_RAW/MusicDelta_Gospel_RAW_06_01.wav",
|
128 |
+
"/data/medley1/v1/Audio/MusicDelta_Grunge/MusicDelta_Grunge_RAW/MusicDelta_Grunge_RAW_05_01.wav",
|
129 |
+
"/data/medley1/v1/Audio/MusicDelta_Hendrix/MusicDelta_Hendrix_RAW/MusicDelta_Hendrix_RAW_04_01.wav",
|
130 |
+
"/data/medley1/v1/Audio/MusicDelta_Punk/MusicDelta_Punk_RAW/MusicDelta_Punk_RAW_04_01.wav",
|
131 |
+
"/data/medley1/v1/Audio/MusicDelta_Reggae/MusicDelta_Reggae_RAW/MusicDelta_Reggae_RAW_04_01.wav",
|
132 |
+
"/data/medley1/v1/Audio/MusicDelta_Rock/MusicDelta_Rock_RAW/MusicDelta_Rock_RAW_05_01.wav",
|
133 |
+
"/data/medley1/v1/Audio/MusicDelta_Rockabilly/MusicDelta_Rockabilly_RAW/MusicDelta_Rockabilly_RAW_05_01.wav",
|
134 |
+
"/data/medley1/v2/Audio/MutualBenefit_NotForNothing/MutualBenefit_NotForNothing_RAW/MutualBenefit_NotForNothing_RAW_06_01.wav",
|
135 |
+
"/data/medley1/v1/Audio/PortStWillow_StayEven/PortStWillow_StayEven_RAW/PortStWillow_StayEven_RAW_08_01.wav",
|
136 |
+
"/data/medley1/v1/Audio/Snowmine_Curfews/Snowmine_Curfews_RAW/Snowmine_Curfews_RAW_03_01.wav",
|
137 |
+
"/data/medley1/v2/Audio/SongYiJeon_TwoMoons/SongYiJeon_TwoMoons_RAW/SongYiJeon_TwoMoons_RAW_01_01.wav",
|
138 |
+
"/data/medley1/v1/Audio/StevenClark_Bounty/StevenClark_Bounty_RAW/StevenClark_Bounty_RAW_08_01.wav",
|
139 |
+
"/data/medley1/v1/Audio/StrandOfOaks_Spacestation/StrandOfOaks_Spacestation_RAW/StrandOfOaks_Spacestation_RAW_04_01.wav",
|
140 |
+
"/data/medley1/v2/Audio/TheKitchenettes_Alive/TheKitchenettes_Alive_RAW/TheKitchenettes_Alive_RAW_01_01.wav",
|
141 |
+
"/data/medley1/v1/Audio/TheScarletBrand_LesFleursDuMal/TheScarletBrand_LesFleursDuMal_RAW/TheScarletBrand_LesFleursDuMal_RAW_08_01.wav",
|
142 |
+
"/data/medley1/v2/Audio/TleilaxEnsemble_Late/TleilaxEnsemble_Late_RAW/TleilaxEnsemble_Late_RAW_04_01.wav",
|
143 |
+
"/data/medley1/v2/Audio/TleilaxEnsemble_Late/TleilaxEnsemble_Late_RAW/TleilaxEnsemble_Late_RAW_05_01.wav",
|
144 |
+
"/data/medley1/v2/Audio/TleilaxEnsemble_MelancholyFlowers/TleilaxEnsemble_MelancholyFlowers_RAW/TleilaxEnsemble_MelancholyFlowers_RAW_04_01.wav",
|
145 |
+
"/data/medley1/v2/Audio/TleilaxEnsemble_MelancholyFlowers/TleilaxEnsemble_MelancholyFlowers_RAW/TleilaxEnsemble_MelancholyFlowers_RAW_05_01.wav",
|
146 |
+
"/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_RAW/Torres_NewSkin_RAW_02_01.wav",
|
147 |
+
"/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_RAW/Torres_NewSkin_RAW_05_01.wav",
|
148 |
+
"/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_RAW/Torres_NewSkin_RAW_10_01.wav",
|
149 |
+
"/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_RAW/Torres_NewSkin_RAW_03_01.wav",
|
150 |
+
"/data/medley1/v1/Audio/Wolf_DieBekherte/Wolf_DieBekherte_RAW/Wolf_DieBekherte_RAW_01_01.wav"
|
151 |
+
],
|
152 |
+
"wet_files": [
|
153 |
+
"/data/medley1/v1/Audio/AClassicEducation_NightOwl/AClassicEducation_NightOwl_STEMS/AClassicEducation_NightOwl_STEM_08.wav",
|
154 |
+
"/data/medley1/v1/Audio/Auctioneer_OurFutureFaces/Auctioneer_OurFutureFaces_STEMS/Auctioneer_OurFutureFaces_STEM_08.wav",
|
155 |
+
"/data/medley1/v1/Audio/AvaLuna_Waterduct/AvaLuna_Waterduct_STEMS/AvaLuna_Waterduct_STEM_08.wav",
|
156 |
+
"/data/medley1/v1/Audio/BigTroubles_Phantom/BigTroubles_Phantom_STEMS/BigTroubles_Phantom_STEM_04.wav",
|
157 |
+
"/data/medley1/v1/Audio/BrandonWebster_DontHearAThing/BrandonWebster_DontHearAThing_STEMS/BrandonWebster_DontHearAThing_STEM_02.wav",
|
158 |
+
"/data/medley1/v1/Audio/BrandonWebster_DontHearAThing/BrandonWebster_DontHearAThing_STEMS/BrandonWebster_DontHearAThing_STEM_01.wav",
|
159 |
+
"/data/medley1/v1/Audio/BrandonWebster_YesSirICanFly/BrandonWebster_YesSirICanFly_STEMS/BrandonWebster_YesSirICanFly_STEM_02.wav",
|
160 |
+
"/data/medley1/v2/Audio/CatMartino_IPromise/CatMartino_IPromise_STEMS/CatMartino_IPromise_STEM_06.wav",
|
161 |
+
"/data/medley1/v1/Audio/ClaraBerryAndWooldog_AirTraffic/ClaraBerryAndWooldog_AirTraffic_STEMS/ClaraBerryAndWooldog_AirTraffic_STEM_07.wav",
|
162 |
+
"/data/medley1/v1/Audio/ClaraBerryAndWooldog_AirTraffic/ClaraBerryAndWooldog_AirTraffic_STEMS/ClaraBerryAndWooldog_AirTraffic_STEM_08.wav",
|
163 |
+
"/data/medley1/v1/Audio/ClaraBerryAndWooldog_Boys/ClaraBerryAndWooldog_Boys_STEMS/ClaraBerryAndWooldog_Boys_STEM_06.wav",
|
164 |
+
"/data/medley1/v1/Audio/ClaraBerryAndWooldog_Stella/ClaraBerryAndWooldog_Stella_STEMS/ClaraBerryAndWooldog_Stella_STEM_07.wav",
|
165 |
+
"/data/medley1/v1/Audio/ClaraBerryAndWooldog_WaltzForMyVictims/ClaraBerryAndWooldog_WaltzForMyVictims_STEMS/ClaraBerryAndWooldog_WaltzForMyVictims_STEM_05.wav",
|
166 |
+
"/data/medley1/v2/Audio/DeadMilkmen_PrisonersCinema/DeadMilkmen_PrisonersCinema_STEMS/DeadMilkmen_PrisonersCinema_STEM_12.wav",
|
167 |
+
"/data/medley1/v1/Audio/DreamersOfTheGhetto_HeavyLove/DreamersOfTheGhetto_HeavyLove_STEMS/DreamersOfTheGhetto_HeavyLove_STEM_08.wav",
|
168 |
+
"/data/medley1/v1/Audio/FacesOnFilm_WaitingForGa/FacesOnFilm_WaitingForGa_STEMS/FacesOnFilm_WaitingForGa_STEM_03.wav",
|
169 |
+
"/data/medley1/v1/Audio/FamilyBand_Again/FamilyBand_Again_STEMS/FamilyBand_Again_STEM_09.wav",
|
170 |
+
"/data/medley1/v1/Audio/Handel_TornamiAVagheggiar/Handel_TornamiAVagheggiar_STEMS/Handel_TornamiAVagheggiar_STEM_01.wav",
|
171 |
+
"/data/medley1/v1/Audio/HeladoNegro_MitadDelMundo/HeladoNegro_MitadDelMundo_STEMS/HeladoNegro_MitadDelMundo_STEM_08.wav",
|
172 |
+
"/data/medley1/v1/Audio/HeladoNegro_MitadDelMundo/HeladoNegro_MitadDelMundo_STEMS/HeladoNegro_MitadDelMundo_STEM_03.wav",
|
173 |
+
"/data/medley1/v1/Audio/HopAlong_SisterCities/HopAlong_SisterCities_STEMS/HopAlong_SisterCities_STEM_07.wav",
|
174 |
+
"/data/medley1/v1/Audio/LizNelson_Coldwar/LizNelson_Coldwar_STEMS/LizNelson_Coldwar_STEM_02.wav",
|
175 |
+
"/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_STEMS/LizNelson_ImComingHome_STEM_02.wav",
|
176 |
+
"/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_STEMS/LizNelson_ImComingHome_STEM_03.wav",
|
177 |
+
"/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_STEMS/LizNelson_ImComingHome_STEM_04.wav",
|
178 |
+
"/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_STEMS/LizNelson_ImComingHome_STEM_01.wav",
|
179 |
+
"/data/medley1/v1/Audio/LizNelson_Rainfall/LizNelson_Rainfall_STEMS/LizNelson_Rainfall_STEM_01.wav",
|
180 |
+
"/data/medley1/v1/Audio/LizNelson_Rainfall/LizNelson_Rainfall_STEMS/LizNelson_Rainfall_STEM_03.wav",
|
181 |
+
"/data/medley1/v1/Audio/LizNelson_Rainfall/LizNelson_Rainfall_STEMS/LizNelson_Rainfall_STEM_02.wav",
|
182 |
+
"/data/medley1/v1/Audio/MatthewEntwistle_DontYouEver/MatthewEntwistle_DontYouEver_STEMS/MatthewEntwistle_DontYouEver_STEM_07.wav",
|
183 |
+
"/data/medley1/v1/Audio/MatthewEntwistle_Lontano/MatthewEntwistle_Lontano_STEMS/MatthewEntwistle_Lontano_STEM_02.wav",
|
184 |
+
"/data/medley1/v1/Audio/Meaxic_TakeAStep/Meaxic_TakeAStep_STEMS/Meaxic_TakeAStep_STEM_08.wav",
|
185 |
+
"/data/medley1/v1/Audio/Meaxic_TakeAStep/Meaxic_TakeAStep_STEMS/Meaxic_TakeAStep_STEM_04.wav",
|
186 |
+
"/data/medley1/v2/Audio/MidnightBlue_HuntingSeason/MidnightBlue_HuntingSeason_STEMS/MidnightBlue_HuntingSeason_STEM_01.wav",
|
187 |
+
"/data/medley1/v2/Audio/MidnightBlue_HuntingSeason/MidnightBlue_HuntingSeason_STEMS/MidnightBlue_HuntingSeason_STEM_02.wav",
|
188 |
+
"/data/medley1/v2/Audio/MidnightBlue_StarsAreScreaming/MidnightBlue_StarsAreScreaming_STEMS/MidnightBlue_StarsAreScreaming_STEM_06.wav",
|
189 |
+
"/data/medley1/v2/Audio/MidnightBlue_StarsAreScreaming/MidnightBlue_StarsAreScreaming_STEMS/MidnightBlue_StarsAreScreaming_STEM_07.wav",
|
190 |
+
"/data/medley1/v1/Audio/Mozart_BesterJungling/Mozart_BesterJungling_STEMS/Mozart_BesterJungling_STEM_01.wav",
|
191 |
+
"/data/medley1/v1/Audio/MusicDelta_80sRock/MusicDelta_80sRock_STEMS/MusicDelta_80sRock_STEM_04.wav",
|
192 |
+
"/data/medley1/v1/Audio/MusicDelta_Beatles/MusicDelta_Beatles_STEMS/MusicDelta_Beatles_STEM_08.wav",
|
193 |
+
"/data/medley1/v1/Audio/MusicDelta_Beatles/MusicDelta_Beatles_STEMS/MusicDelta_Beatles_STEM_07.wav",
|
194 |
+
"/data/medley1/v1/Audio/MusicDelta_Britpop/MusicDelta_Britpop_STEMS/MusicDelta_Britpop_STEM_07.wav",
|
195 |
+
"/data/medley1/v1/Audio/MusicDelta_Britpop/MusicDelta_Britpop_STEMS/MusicDelta_Britpop_STEM_08.wav",
|
196 |
+
"/data/medley1/v1/Audio/MusicDelta_Country1/MusicDelta_Country1_STEMS/MusicDelta_Country1_STEM_05.wav",
|
197 |
+
"/data/medley1/v1/Audio/MusicDelta_Country2/MusicDelta_Country2_STEMS/MusicDelta_Country2_STEM_05.wav",
|
198 |
+
"/data/medley1/v1/Audio/MusicDelta_Disco/MusicDelta_Disco_STEMS/MusicDelta_Disco_STEM_04.wav",
|
199 |
+
"/data/medley1/v1/Audio/MusicDelta_Gospel/MusicDelta_Gospel_STEMS/MusicDelta_Gospel_STEM_06.wav",
|
200 |
+
"/data/medley1/v1/Audio/MusicDelta_Grunge/MusicDelta_Grunge_STEMS/MusicDelta_Grunge_STEM_05.wav",
|
201 |
+
"/data/medley1/v1/Audio/MusicDelta_Hendrix/MusicDelta_Hendrix_STEMS/MusicDelta_Hendrix_STEM_04.wav",
|
202 |
+
"/data/medley1/v1/Audio/MusicDelta_Punk/MusicDelta_Punk_STEMS/MusicDelta_Punk_STEM_04.wav",
|
203 |
+
"/data/medley1/v1/Audio/MusicDelta_Reggae/MusicDelta_Reggae_STEMS/MusicDelta_Reggae_STEM_04.wav",
|
204 |
+
"/data/medley1/v1/Audio/MusicDelta_Rock/MusicDelta_Rock_STEMS/MusicDelta_Rock_STEM_05.wav",
|
205 |
+
"/data/medley1/v1/Audio/MusicDelta_Rockabilly/MusicDelta_Rockabilly_STEMS/MusicDelta_Rockabilly_STEM_05.wav",
|
206 |
+
"/data/medley1/v2/Audio/MutualBenefit_NotForNothing/MutualBenefit_NotForNothing_STEMS/MutualBenefit_NotForNothing_STEM_06.wav",
|
207 |
+
"/data/medley1/v1/Audio/PortStWillow_StayEven/PortStWillow_StayEven_STEMS/PortStWillow_StayEven_STEM_08.wav",
|
208 |
+
"/data/medley1/v1/Audio/Snowmine_Curfews/Snowmine_Curfews_STEMS/Snowmine_Curfews_STEM_03.wav",
|
209 |
+
"/data/medley1/v2/Audio/SongYiJeon_TwoMoons/SongYiJeon_TwoMoons_STEMS/SongYiJeon_TwoMoons_STEM_01.wav",
|
210 |
+
"/data/medley1/v1/Audio/StevenClark_Bounty/StevenClark_Bounty_STEMS/StevenClark_Bounty_STEM_08.wav",
|
211 |
+
"/data/medley1/v1/Audio/StrandOfOaks_Spacestation/StrandOfOaks_Spacestation_STEMS/StrandOfOaks_Spacestation_STEM_04.wav",
|
212 |
+
"/data/medley1/v2/Audio/TheKitchenettes_Alive/TheKitchenettes_Alive_STEMS/TheKitchenettes_Alive_STEM_01.wav",
|
213 |
+
"/data/medley1/v1/Audio/TheScarletBrand_LesFleursDuMal/TheScarletBrand_LesFleursDuMal_STEMS/TheScarletBrand_LesFleursDuMal_STEM_08.wav",
|
214 |
+
"/data/medley1/v2/Audio/TleilaxEnsemble_Late/TleilaxEnsemble_Late_STEMS/TleilaxEnsemble_Late_STEM_04.wav",
|
215 |
+
"/data/medley1/v2/Audio/TleilaxEnsemble_Late/TleilaxEnsemble_Late_STEMS/TleilaxEnsemble_Late_STEM_05.wav",
|
216 |
+
"/data/medley1/v2/Audio/TleilaxEnsemble_MelancholyFlowers/TleilaxEnsemble_MelancholyFlowers_STEMS/TleilaxEnsemble_MelancholyFlowers_STEM_04.wav",
|
217 |
+
"/data/medley1/v2/Audio/TleilaxEnsemble_MelancholyFlowers/TleilaxEnsemble_MelancholyFlowers_STEMS/TleilaxEnsemble_MelancholyFlowers_STEM_05.wav",
|
218 |
+
"/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_STEMS/Torres_NewSkin_STEM_02.wav",
|
219 |
+
"/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_STEMS/Torres_NewSkin_STEM_05.wav",
|
220 |
+
"/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_STEMS/Torres_NewSkin_STEM_10.wav",
|
221 |
+
"/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_STEMS/Torres_NewSkin_STEM_03.wav",
|
222 |
+
"/data/medley1/v1/Audio/Wolf_DieBekherte/Wolf_DieBekherte_STEMS/Wolf_DieBekherte_STEM_01.wav"
|
223 |
+
],
|
224 |
+
"alignment_shifts": [
|
225 |
+
20,
|
226 |
+
-675,
|
227 |
+
-2130,
|
228 |
+
-1644,
|
229 |
+
3,
|
230 |
+
3,
|
231 |
+
-98,
|
232 |
+
-3,
|
233 |
+
0,
|
234 |
+
0,
|
235 |
+
63,
|
236 |
+
63,
|
237 |
+
0,
|
238 |
+
-2,
|
239 |
+
4,
|
240 |
+
-657,
|
241 |
+
-25414,
|
242 |
+
-2,
|
243 |
+
-1967,
|
244 |
+
-1996,
|
245 |
+
-761,
|
246 |
+
6475,
|
247 |
+
5091,
|
248 |
+
1238,
|
249 |
+
5689,
|
250 |
+
7158,
|
251 |
+
2265,
|
252 |
+
1260,
|
253 |
+
1144,
|
254 |
+
0,
|
255 |
+
-5,
|
256 |
+
0,
|
257 |
+
841,
|
258 |
+
0,
|
259 |
+
0,
|
260 |
+
-2,
|
261 |
+
0,
|
262 |
+
-2,
|
263 |
+
-490,
|
264 |
+
-47,
|
265 |
+
-3,
|
266 |
+
-185,
|
267 |
+
-20,
|
268 |
+
-46,
|
269 |
+
-43,
|
270 |
+
-47,
|
271 |
+
-175,
|
272 |
+
-46,
|
273 |
+
366,
|
274 |
+
-46,
|
275 |
+
-48,
|
276 |
+
-50,
|
277 |
+
-47,
|
278 |
+
-5,
|
279 |
+
289,
|
280 |
+
4298,
|
281 |
+
0,
|
282 |
+
-235,
|
283 |
+
-351,
|
284 |
+
0,
|
285 |
+
1,
|
286 |
+
0,
|
287 |
+
0,
|
288 |
+
0,
|
289 |
+
0,
|
290 |
+
-2,
|
291 |
+
-5,
|
292 |
+
-4,
|
293 |
+
-2,
|
294 |
+
2
|
295 |
+
],
|
296 |
+
"params_original_shapes": [
|
297 |
+
[],
|
298 |
+
[],
|
299 |
+
[],
|
300 |
+
[],
|
301 |
+
[],
|
302 |
+
[],
|
303 |
+
[],
|
304 |
+
[],
|
305 |
+
[],
|
306 |
+
[],
|
307 |
+
[],
|
308 |
+
[],
|
309 |
+
[],
|
310 |
+
[],
|
311 |
+
[],
|
312 |
+
[],
|
313 |
+
[],
|
314 |
+
[
|
315 |
+
1
|
316 |
+
],
|
317 |
+
[],
|
318 |
+
[],
|
319 |
+
[],
|
320 |
+
[],
|
321 |
+
[],
|
322 |
+
[
|
323 |
+
1
|
324 |
+
],
|
325 |
+
[],
|
326 |
+
[],
|
327 |
+
[],
|
328 |
+
[],
|
329 |
+
[],
|
330 |
+
[],
|
331 |
+
[],
|
332 |
+
[
|
333 |
+
6,
|
334 |
+
2
|
335 |
+
],
|
336 |
+
[
|
337 |
+
2,
|
338 |
+
6
|
339 |
+
],
|
340 |
+
[
|
341 |
+
49,
|
342 |
+
1
|
343 |
+
],
|
344 |
+
[
|
345 |
+
6,
|
346 |
+
6
|
347 |
+
],
|
348 |
+
[],
|
349 |
+
[],
|
350 |
+
[],
|
351 |
+
[],
|
352 |
+
[],
|
353 |
+
[],
|
354 |
+
[],
|
355 |
+
[],
|
356 |
+
[],
|
357 |
+
[],
|
358 |
+
[]
|
359 |
+
],
|
360 |
+
"params_keys": [
|
361 |
+
"0.params.gain",
|
362 |
+
"0.params.parametrizations.freq.original",
|
363 |
+
"0.params.parametrizations.Q.original",
|
364 |
+
"1.params.gain",
|
365 |
+
"1.params.parametrizations.freq.original",
|
366 |
+
"1.params.parametrizations.Q.original",
|
367 |
+
"2.params.gain",
|
368 |
+
"2.params.parametrizations.freq.original",
|
369 |
+
"3.params.gain",
|
370 |
+
"3.params.parametrizations.freq.original",
|
371 |
+
"4.params.parametrizations.freq.original",
|
372 |
+
"4.params.parametrizations.Q.original",
|
373 |
+
"5.params.parametrizations.freq.original",
|
374 |
+
"5.params.parametrizations.Q.original",
|
375 |
+
"6.params.cmp_th",
|
376 |
+
"6.params.exp_th",
|
377 |
+
"6.params.make_up",
|
378 |
+
"6.params.parametrizations.lookahead.original",
|
379 |
+
"6.params.parametrizations.at.original",
|
380 |
+
"6.params.parametrizations.rt.original",
|
381 |
+
"6.params.parametrizations.avg_coef.original",
|
382 |
+
"6.params.parametrizations.cmp_ratio.original",
|
383 |
+
"6.params.parametrizations.exp_ratio.original",
|
384 |
+
"7.params.parametrizations.sends_0.original",
|
385 |
+
"7.effects.0.params.parametrizations.delay.original",
|
386 |
+
"7.effects.0.params.parametrizations.feedback.original",
|
387 |
+
"7.effects.0.params.parametrizations.gain.original",
|
388 |
+
"7.effects.0.eq.params.parametrizations.freq.original",
|
389 |
+
"7.effects.0.eq.params.parametrizations.Q.original",
|
390 |
+
"7.effects.0.odd_pan.params.parametrizations.pan.original",
|
391 |
+
"7.effects.0.even_pan.params.parametrizations.pan.original",
|
392 |
+
"7.effects.1.params.b",
|
393 |
+
"7.effects.1.params.c",
|
394 |
+
"7.effects.1.params.parametrizations.gamma.original",
|
395 |
+
"7.effects.1.params.parametrizations.U.original",
|
396 |
+
"7.effects.1.eq.0.params.gain",
|
397 |
+
"7.effects.1.eq.0.params.parametrizations.freq.original",
|
398 |
+
"7.effects.1.eq.0.params.parametrizations.Q.original",
|
399 |
+
"7.effects.1.eq.1.params.gain",
|
400 |
+
"7.effects.1.eq.1.params.parametrizations.freq.original",
|
401 |
+
"7.effects.1.eq.1.params.parametrizations.Q.original",
|
402 |
+
"7.effects.1.eq.2.params.gain",
|
403 |
+
"7.effects.1.eq.2.params.parametrizations.freq.original",
|
404 |
+
"7.effects.1.eq.3.params.gain",
|
405 |
+
"7.effects.1.eq.3.params.parametrizations.freq.original",
|
406 |
+
"7.pan.params.parametrizations.pan.original"
|
407 |
+
],
|
408 |
+
"problematic_runs": {
|
409 |
+
"terminated": [],
|
410 |
+
"loss_above_4.0": [],
|
411 |
+
"not_converged": [
|
412 |
+
[
|
413 |
+
"Debussy_LenfantProdigue/Debussy_LenfantProdigue_STEM_01/run_0",
|
414 |
+
1.0083130598068237,
|
415 |
+
1.673229455947876
|
416 |
+
]
|
417 |
+
],
|
418 |
+
"fluctuated_above_0.2": [
|
419 |
+
[
|
420 |
+
"AlexanderRoss_GoodbyeBolero/AlexanderRoss_GoodbyeBolero_STEM_06/run_0",
|
421 |
+
0.5641272068023682
|
422 |
+
],
|
423 |
+
[
|
424 |
+
"AlexanderRoss_VelvetCurtain/AlexanderRoss_VelvetCurtain_STEM_06/run_0",
|
425 |
+
0.6348648071289062
|
426 |
+
],
|
427 |
+
[
|
428 |
+
"Mozart_DiesBildnis/Mozart_DiesBildnis_STEM_01/run_0",
|
429 |
+
0.2333838939666748
|
430 |
+
],
|
431 |
+
[
|
432 |
+
"Schubert_Erstarrung/Schubert_Erstarrung_STEM_01/run_0",
|
433 |
+
0.24937140941619873
|
434 |
+
],
|
435 |
+
[
|
436 |
+
"Schumann_Mignon/Schumann_Mignon_STEM_02/run_0",
|
437 |
+
0.6572010517120361
|
438 |
+
]
|
439 |
+
]
|
440 |
+
}
|
441 |
+
}
|
presets/rt_config.yaml
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epochs: 2000
|
2 |
+
data_dir: null
|
3 |
+
log_dir: null
|
4 |
+
lufs: -18
|
5 |
+
sr: 44100
|
6 |
+
chunk_duration: 12
|
7 |
+
chunk_overlap: 5
|
8 |
+
device: cuda
|
9 |
+
batch_size: 35
|
10 |
+
dataset: medley_vocal
|
11 |
+
regularise_delay: true
|
12 |
+
model:
|
13 |
+
_target_: torch.nn.Sequential
|
14 |
+
_args_:
|
15 |
+
- _target_: modules.fx.Peak
|
16 |
+
sr: 44100
|
17 |
+
freq: 800
|
18 |
+
min_freq: 33
|
19 |
+
max_freq: 5400
|
20 |
+
- _target_: modules.fx.Peak
|
21 |
+
sr: 44100
|
22 |
+
freq: 4000
|
23 |
+
min_freq: 200
|
24 |
+
max_freq: 17500
|
25 |
+
- _target_: modules.fx.LowShelf
|
26 |
+
sr: 44100
|
27 |
+
freq: 115
|
28 |
+
min_freq: 30
|
29 |
+
max_freq: 200
|
30 |
+
- _target_: modules.fx.HighShelf
|
31 |
+
sr: 44100
|
32 |
+
freq: 6000
|
33 |
+
min_freq: 750
|
34 |
+
max_freq: 8300
|
35 |
+
- _target_: modules.fx.LowPass
|
36 |
+
sr: 44100
|
37 |
+
freq: 17500
|
38 |
+
min_freq: 200
|
39 |
+
max_freq: 18000
|
40 |
+
- _target_: modules.fx.HighPass
|
41 |
+
sr: 44100
|
42 |
+
freq: 200
|
43 |
+
min_freq: 16
|
44 |
+
max_freq: 5300
|
45 |
+
- _target_: modules.fx.CompressorExpander
|
46 |
+
sr: 44100
|
47 |
+
cmp_ratio: 2.0
|
48 |
+
exp_ratio: 0.5
|
49 |
+
at_ms: 50.0
|
50 |
+
rt_ms: 50.0
|
51 |
+
avg_coef: 0.3
|
52 |
+
cmp_th: -18.0
|
53 |
+
exp_th: -48.0
|
54 |
+
make_up: 0.0
|
55 |
+
lookahead: true
|
56 |
+
max_lookahead: 15
|
57 |
+
- _target_: modules.fx.SendFXsAndSum
|
58 |
+
_args_:
|
59 |
+
# - _target_: modules.fx.SurrogateDelay
|
60 |
+
- _target_: modules.rt.RealTimeDelay
|
61 |
+
sr: 44100
|
62 |
+
delay: 400
|
63 |
+
# dropout: 0
|
64 |
+
# straight_through: true
|
65 |
+
recursive_eq: true
|
66 |
+
ir_duration: 4
|
67 |
+
eq:
|
68 |
+
_target_: modules.fx.LowPass
|
69 |
+
sr: 44100
|
70 |
+
freq: 8000
|
71 |
+
min_freq: 200
|
72 |
+
max_freq: 16000
|
73 |
+
min_Q: 0.5
|
74 |
+
max_Q: 2
|
75 |
+
# - _target_: modules.fx.FDN
|
76 |
+
- _target_: modules.rt.RealTimeFDN
|
77 |
+
sr: 44100
|
78 |
+
delays:
|
79 |
+
- 997
|
80 |
+
- 1153
|
81 |
+
- 1327
|
82 |
+
- 1559
|
83 |
+
- 1801
|
84 |
+
- 2099
|
85 |
+
num_decay_freq: 49
|
86 |
+
delay_independent_decay: true
|
87 |
+
ir_duration: 12
|
88 |
+
eq:
|
89 |
+
_target_: torch.nn.Sequential
|
90 |
+
_args_:
|
91 |
+
- _target_: modules.fx.Peak
|
92 |
+
sr: 44100
|
93 |
+
freq: 800
|
94 |
+
min_freq: 200
|
95 |
+
max_freq: 2500
|
96 |
+
min_Q: 0.1
|
97 |
+
max_Q: 3
|
98 |
+
- _target_: modules.fx.Peak
|
99 |
+
sr: 44100
|
100 |
+
freq: 4000
|
101 |
+
min_freq: 600
|
102 |
+
max_freq: 7000
|
103 |
+
min_Q: 0.1
|
104 |
+
max_Q: 3
|
105 |
+
- _target_: modules.fx.LowShelf
|
106 |
+
sr: 44100
|
107 |
+
freq: 115
|
108 |
+
min_freq: 30
|
109 |
+
max_freq: 450
|
110 |
+
- _target_: modules.fx.HighShelf
|
111 |
+
sr: 44100
|
112 |
+
freq: 8000
|
113 |
+
min_freq: 1500
|
114 |
+
max_freq: 16000
|
115 |
+
cross_send: true
|
116 |
+
pan_direct: true
|
117 |
+
optimiser:
|
118 |
+
_target_: torch.optim.Adam
|
119 |
+
lr: 0.01
|
120 |
+
mss:
|
121 |
+
fft_sizes:
|
122 |
+
- 128
|
123 |
+
- 512
|
124 |
+
- 2048
|
125 |
+
hop_sizes:
|
126 |
+
- 32
|
127 |
+
- 128
|
128 |
+
- 512
|
129 |
+
mldr:
|
130 |
+
s_taus:
|
131 |
+
- 50
|
132 |
+
- 100
|
133 |
+
l_taus:
|
134 |
+
- 1000
|
135 |
+
- 2000
|
136 |
+
loss_fn:
|
137 |
+
_target_: loss.SumLosses
|
138 |
+
weights:
|
139 |
+
- 1.0
|
140 |
+
- 0.5
|
141 |
+
- 0.5
|
142 |
+
- 0.25
|
143 |
+
loss_fns:
|
144 |
+
- _target_: auraloss.freq.MultiResolutionSTFTLoss
|
145 |
+
fft_sizes:
|
146 |
+
- 128
|
147 |
+
- 512
|
148 |
+
- 2048
|
149 |
+
hop_sizes:
|
150 |
+
- 32
|
151 |
+
- 128
|
152 |
+
- 512
|
153 |
+
win_lengths:
|
154 |
+
- 128
|
155 |
+
- 512
|
156 |
+
- 2048
|
157 |
+
sample_rate: 44100
|
158 |
+
perceptual_weighting: true
|
159 |
+
- _target_: auraloss.freq.SumAndDifferenceSTFTLoss
|
160 |
+
fft_sizes:
|
161 |
+
- 128
|
162 |
+
- 512
|
163 |
+
- 2048
|
164 |
+
hop_sizes:
|
165 |
+
- 32
|
166 |
+
- 128
|
167 |
+
- 512
|
168 |
+
win_lengths:
|
169 |
+
- 128
|
170 |
+
- 512
|
171 |
+
- 2048
|
172 |
+
sample_rate: 44100
|
173 |
+
perceptual_weighting: true
|
174 |
+
- _target_: loss.ldr.MLDRLoss
|
175 |
+
sr: 44100
|
176 |
+
s_taus:
|
177 |
+
- 50
|
178 |
+
- 100
|
179 |
+
l_taus:
|
180 |
+
- 1000
|
181 |
+
- 2000
|
182 |
+
- _target_: loss.ldr.MLDRLoss
|
183 |
+
sr: 44100
|
184 |
+
mid_side: true
|
185 |
+
s_taus:
|
186 |
+
- 50
|
187 |
+
- 100
|
188 |
+
l_taus:
|
189 |
+
- 1000
|
190 |
+
- 2000
|