Spaces:
Runtime error
Runtime error
File size: 6,118 Bytes
045d76c c82f95d 045d76c de84014 045d76c 55ecc31 045d76c 55ecc31 045d76c 55ecc31 045d76c c82f95d 045d76c 55ecc31 045d76c 55ecc31 045d76c e53525f c82f95d dd4125a 045d76c 55ecc31 045d76c 55ecc31 045d76c 12a270b 045d76c f4e8ffa 045d76c 55ecc31 045d76c 55ecc31 045d76c e468937 045d76c 55ecc31 045d76c 55ecc31 045d76c 128d193 55ecc31 045d76c d053bab 128d193 56114a5 045d76c 8e6ff6d e53525f c50cbfd 8e6ff6d fdf4637 8e6ff6d 045d76c dd4125a 045d76c fdf4637 d053bab fdf4637 55ecc31 fdf4637 045d76c 128d193 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
"""Interface to play against the model.
"""
from typing import Optional
import huggingface_hub
import chess
import chess.svg
import uuid
import random
import wandb
import gradio as gr
from . import constants
model_name = "yp-edu/gpt2-stockfish-debug"
headers = {
"X-Wait-For-Model": "true",
"X-Use-Cache": "false",
}
client = huggingface_hub.InferenceClient(model=model_name, headers=headers)
inference_fn = client.text_generation
def plot_board(
board: chess.Board,
orientation: Optional[bool] = None,
):
if orientation is None:
orientation = board.turn
try:
last_move = board.peek()
arrows = [(last_move.from_square, last_move.to_square)]
except IndexError:
arrows = []
if board.is_check():
check = board.king(board.turn)
else:
check = None
svg_board = chess.svg.board(
board,
orientation=orientation,
check=check,
size=350,
arrows=arrows,
)
id = str(uuid.uuid4())
with open(f"{constants.FIGURE_DIRECTORY}/board_{id}.svg", "w") as f:
f.write(svg_board)
return f"{constants.FIGURE_DIRECTORY}/board_{id}.svg"
def render_board(
current_board: chess.Board,
orientation: Optional[bool] = None,
):
fen = current_board.fen()
pgn = current_board.root().variation_san(current_board.move_stack)
image_board = plot_board(current_board, orientation=orientation)
return fen, pgn, "", image_board
def play_user_move(
uci_move: str,
current_board: chess.Board,
):
current_board.push_uci(uci_move)
return current_board
def play_ai_move(
current_board: chess.Board,
temperature: float = 0.1,
):
uci_move = inference_fn(
prompt=f"FEN: {current_board.fen()}\nMOVE:",
temperature=temperature,
)
current_board.push_uci(uci_move.strip())
return current_board
def try_play_move(
username: str,
move_to_play: str,
current_board: chess.Board,
):
if current_board.is_game_over():
gr.Warning("The game is already over")
return (
*render_board(current_board, orientation=not current_board.turn),
current_board,
)
try:
current_board = play_user_move(move_to_play.strip(), current_board)
if current_board.is_game_over():
gr.Info(f"Congratulations, {username}!")
with wandb.init(project="gpt2-stockfish-debug", entity="yp-edu") as run:
run.log(
{
"username": username,
"winin": current_board.fullmove_number,
"pgn": current_board.root().variation_san(
current_board.move_stack
),
}
)
run.finish()
return (
*render_board(current_board, orientation=not current_board.turn),
current_board,
)
except:
gr.Warning("Invalid move")
return *render_board(current_board), current_board
temperature_retries = [(i + 1) / 10 for i in range(10)]
for temperature in temperature_retries:
try:
current_board = play_ai_move(current_board, temperature=temperature)
break
except:
gr.Warning(f"AI move failed with temperature {temperature}")
else:
gr.Warning("AI move failed with all temperatures")
random_move = random.choice(list(current_board.legal_moves))
gr.Warning(f"Playing random move {random_move}")
current_board.push(random_move)
return *render_board(current_board), current_board
return *render_board(current_board), current_board
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
username = gr.Textbox(
label="Username to record on leaderboard (should you win)",
lines=1,
max_lines=1,
value="",
)
leaderboard_md = gr.Markdown(
label="Leaderboard",
value="See the leaderboard [here](https://wandb.ai/yp-edu/gpt2-stockfish-debug/reports/Leaderboard--Vmlldzo2OTU0NDc2?accessToken=xito8t675j3e55owwer09hp3kk9emdg8620kesufhbng0ap4uodlulrny0t0o15n).",
)
current_fen = gr.Textbox(
label="Board FEN",
lines=1,
max_lines=1,
value=chess.STARTING_FEN,
)
current_pgn = gr.Textbox(
label="Action sequence",
lines=1,
value="",
)
with gr.Row():
move_to_play = gr.Textbox(
label="Move to play (UCI)",
lines=1,
max_lines=1,
value="",
)
play_button = gr.Button("Play")
reset_button = gr.Button("Reset")
with gr.Column():
image_board = gr.Image(label="Board")
static_inputs = [
username,
move_to_play,
]
static_outputs = [
current_fen,
current_pgn,
move_to_play,
image_board,
]
is_ai_white = random.choice([True, False])
init_board = chess.Board()
if is_ai_white:
init_board = play_ai_move(init_board)
state_board = gr.State(value=init_board)
play_button.click(
try_play_move,
inputs=[*static_inputs, state_board],
outputs=[*static_outputs, state_board],
)
move_to_play.submit(
try_play_move,
inputs=[*static_inputs, state_board],
outputs=[*static_outputs, state_board],
)
def reset_board():
board = chess.Board()
is_ai_white = random.choice([True, False])
if is_ai_white:
board = play_ai_move(board)
return *render_board(board), board
reset_button.click(
reset_board,
outputs=[*static_outputs, state_board],
)
interface.load(render_board, inputs=[state_board], outputs=[*static_outputs])
|