File size: 9,587 Bytes
95f97c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
from torch_geometric.data import Dataset
import os
from .context_gen import Reaction_Cluster
import json
from .data_utils import smiles2data, reformat_smiles
from collections import defaultdict
import random
from data_provider.caption_dataset import PretrainCaptionDataset
from data_provider.synthesis_dataset import SynthesisDataset

def format_float_from_string(s):
    try:
        float_value = float(s)
        return f'{float_value:.2f}'
    except ValueError:
        return s

class MoleculeAbstract(Dataset):
    def __init__(self, 
            root,
            rxn_num=1000,
            rxn_batch_size=4,
            smi_max_len=128,
            prompt=None,
            disable_graph_cache=False,
            disable_graphs=False,
            context_style='weighted_rxn',
            use_caption_dataset=False,
            caption_batch_num=10000,
            synthesis_datasetpath=None,
            synthesis_batch_num=10000,
            reverse_ratio=0.5,
            enable_abstract=True,
            enable_property=True,
            smiles_type='default',
            mode='train'
        ):
        super(MoleculeAbstract, self).__init__(root)
        self.root = root
        self.rxn_num = rxn_num
        self.rxn_batch_size = rxn_batch_size
        self.smi_max_len = smi_max_len
        self.context_style = context_style
        self.tokenizer = None
        self.disable_graph_cache = disable_graph_cache
        self.disable_graphs = disable_graphs
        self.use_caption_dataset = use_caption_dataset
        self.smiles_type = smiles_type
        if use_caption_dataset:
            self.caption_dataset = PretrainCaptionDataset(
                os.path.join(root, '../caption_data'),
                smi_max_len=smi_max_len,
                use_graph=not self.disable_graphs,
                disable_graph_cache=disable_graph_cache,
                smiles_type=smiles_type,
            )
            self.caption_batch_num = caption_batch_num
        self.use_synthesis_dataset = bool(synthesis_datasetpath)
        if self.use_synthesis_dataset:
            self.synthesis_dataset = SynthesisDataset(
                synthesis_datasetpath,
                'train',
                smi_max_len,
                roundrobin_train=True,
                use_graph=not disable_graphs,
                disable_graph_cache=disable_graph_cache,
                smiles_type='default',
            )
            self.synthesis_batch_num = synthesis_batch_num
        if not self.disable_graphs:
            self.mol_graph_map = torch.load(os.path.join(self.root, 'mol_graph_map.pt'))
        reaction_filename = 'reactions/reactions_test.json' if (mode=='test') else 'reactions/reactions.json'
        if smiles_type=='r_smiles':
            reaction_filename = 'reactions/reactions_wRSMILES.json'
        self.cluster = Reaction_Cluster(self.root, reaction_filename=reaction_filename, reverse_ratio=reverse_ratio)
        self.reload_data_list()
        self.abstract_max_len = 10240
        self.property_max_len = 10240
        self.enable_abstract = enable_abstract
        self.enable_property = enable_property

    def get(self, index):
        return self.__getitem__(index)

    def len(self):
        return len(self)

    def __len__(self):
        data_len = len(self.data_list)
        if self.use_caption_dataset:
            data_len += len(self.caption_index_list)
        if self.use_synthesis_dataset:
            data_len += len(self.synthesis_index_list)
        return data_len
    
    def reload_data_list(self):
        k = self.rxn_batch_size
        if self.context_style == 'weighted_rxn':
            self.data_list = self.cluster(self.rxn_num, k=k)
        elif self.context_style == 'uniform_rxn':
            self.data_list = self.cluster.generate_batch_uniform_rxn(self.rxn_num, k=k)
        elif self.context_style == 'uniform_mol':
            self.data_list = self.cluster.generate_batch_uniform_mol(self.rxn_num, k=k)
        elif self.context_style == 'single_mol':
            self.data_list = self.cluster.generate_batch_single(self.rxn_num)
        elif self.context_style == 'hybrid':
            self.data_list = self.cluster(self.rxn_num//2, k=k)
            self.data_list += self.cluster.generate_batch_uniform_mol(self.rxn_num//2, k=k)
        else:
            raise NotImplementedError
        if self.use_caption_dataset:
            assert self.caption_batch_num*k <= len(self.caption_dataset)
            caption_index_list = random.sample(range(len(self.caption_dataset)), self.caption_batch_num*k)
            self.caption_index_list = [caption_index_list[i*k:(i+1)*k] for i in range(self.caption_batch_num)]
        else:
            self.caption_index_list = []
        if self.use_synthesis_dataset:
            if self.synthesis_dataset.roundrobin_train:
                self.synthesis_dataset.reload_data()
            assert self.synthesis_batch_num <= len(self.synthesis_dataset)
            self.synthesis_index_list = random.sample(range(len(self.synthesis_dataset)), self.synthesis_batch_num)
        else:
            self.synthesis_index_list = []

    def make_prompt(self, mol_batch, smi_max_len=128):
        mol_prompt_list, text_prompt_list = [], []
        last_role = None
        for mol_dict in mol_batch:
            smiles = mol_dict['canon_smiles']
            if self.smiles_type=='r_smiles':
                if 'r_smiles' in mol_dict:
                    smiles = mol_dict['r_smiles']
                # else:
                #     smiles = reformat_smiles(smiles, smiles_type='restricted')
            else:
                smiles = reformat_smiles(smiles, smiles_type=self.smiles_type)
            mol_prompt = f'[START_SMILES]{smiles[:smi_max_len]}[END_SMILES]. '
            if 'role' in mol_dict:
                role = {
                    'REACTANT': 'Reactant',
                    'CATALYST': 'Catalyst',
                    'SOLVENT': 'Solvent',
                    'PRODUCT': 'Product',
                }[mol_dict['role']]
                if last_role != role:
                    mol_prompt = f'{role}: {mol_prompt}'
                    last_role = role
            text_prompt = self.make_abstract(mol_dict)
            mol_prompt_list.append(mol_prompt)
            text_prompt_list.append(text_prompt)
        return mol_prompt_list, text_prompt_list

    def make_abstract(self, mol_dict):
        prompt = ''
        if self.enable_abstract and 'abstract' in mol_dict:
            abstract_string = mol_dict['abstract'][:self.abstract_max_len]
            prompt += f'[Abstract] {abstract_string} '

        if self.enable_property:
            property_string = ''
            property_dict = mol_dict['property'] if 'property' in mol_dict else {}
            for property_key in ['Experimental Properties', 'Computed Properties']:
                if not property_key in property_dict:
                    continue
                for key, value in property_dict[property_key].items():
                    if isinstance(value, float):
                        key_value_string = f'{key}: {value:.2f}; '
                    elif isinstance(value, str):
                        float_value = format_float_from_string(value)
                        key_value_string = f'{key}: {float_value}; '
                    else:
                        key_value_string = f'{key}: {value}; '
                    if len(property_string+key_value_string) > self.property_max_len:
                        break
                    property_string += key_value_string
            if property_string:
                property_string = property_string[:self.property_max_len]
                prompt += f'[Properties] {property_string}. '
        return prompt

    def get_caption_data(self, index):
        caption_index = self.caption_index_list[index]
        graph_list, mol_prompt_list, text_prompt_list = [], [], []
        for idx in caption_index:
            graph_item, text, smiles_prompt = self.caption_dataset[idx]
            graph_list.append(graph_item)
            mol_prompt_list.append(smiles_prompt)
            text_prompt_list.append(text)

        return graph_list, mol_prompt_list, text_prompt_list
    
    def get_synthesis_data(self, index):
        synthesis_index = self.synthesis_index_list[index]
        _, graph_list, output_text, input_text = self.synthesis_dataset[synthesis_index]
        return graph_list, [input_text], [output_text]

    def __getitem__(self, index):
        if index < len(self.data_list):
            mol_batch = self.data_list[index]
        elif index < len(self.data_list)+len(self.caption_index_list):
            assert self.use_caption_dataset
            return self.get_caption_data(index-len(self.data_list))
        else:
            assert self.use_synthesis_dataset
            return self.get_synthesis_data(index-(len(self.data_list)+len(self.caption_index_list)))

        graph_list = []
        for mol_dict in mol_batch:
            smiles = mol_dict['canon_smiles']
            if self.disable_graphs:
                graph_item = None
            else:
                if self.disable_graph_cache:
                    graph_item = smiles2data(smiles)
                else:
                    assert smiles in self.mol_graph_map
                    graph_item = self.mol_graph_map[smiles]
            graph_list.append(graph_item)
        mol_prompt_list, text_prompt_list = self.make_prompt(mol_batch, smi_max_len=self.smi_max_len)

        return graph_list, mol_prompt_list, text_prompt_list