Spaces:
Runtime error
Runtime error
File size: 9,789 Bytes
95f97c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
from Levenshtein import distance as lev_distance
import random
import json
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction, corpus_bleu
from nltk.translate.meteor_score import meteor_score
from rouge_score import rouge_scorer
from tqdm import tqdm
import random
import numpy as np
import argparse
from paragraph2actions.readable_converter import ReadableConverter
import re
from transformers import AutoTokenizer
from collections import defaultdict
import time
from functools import wraps
import os
import torch
import textdistance
from typing import List
def levenshtein_similarity(truth: List[str], pred: List[str]) -> List[float]:
assert len(truth) == len(pred)
scores: List[float] = [
textdistance.levenshtein.normalized_similarity(t, p)
for t, p in zip(truth, pred)
]
return scores
def modified_bleu(truth: List[str], pred: List[str], bleu_n=4) -> float:
"""
Calculates the BLEU score of a translation, with a small modification in order not to penalize sentences
with less than 4 words.
Returns:
value between 0 and 1.
"""
references = [sentence.split() for sentence in truth]
candidates = [sentence.split() for sentence in pred]
# BLEU penalizes sentences with only one word. Even correct translations get a score of zero.
references = [r + max(0, bleu_n - len(r)) * [""] for r in references]
candidates = [c + max(0, bleu_n - len(c)) * [""] for c in candidates]
# references must have a larger depth because it supports multiple choices
refs = [[r] for r in references]
weights = {
2: (0.5, 0.5),
4: (0.25, 0.25, 0.25, 0.25),
}
return 100*corpus_bleu(refs, candidates, weights=weights[bleu_n]) # type: ignore[no-any-return]
def set_random_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # If using multi-GPU.
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def time_it(func):
@wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"Function {func.__name__} finished in {end_time - start_time:.5f} seconds.\n")
return result
return wrapper
def accuracy_score(score_list, threshold):
matches = sum(score>=threshold for score in score_list)
acc = matches / len(score_list)
return acc
def extract_tokenized_entities(text):
pattern = r'\$[^\$]+\$|#[^#]+#|@[^\@]+@'
return re.findall(pattern, text)
def extract_reactant_cnt(text):
max_id = None
for token in text.split():
if token.startswith('$') and token.endswith('$'):
try:
current_id = int(token.strip('$'))
if max_id is None or current_id > max_id:
max_id = current_id
except ValueError:
pass # Ignore tokens that do not represent an integer
if not max_id:
return 0
return max_id
class Metric_calculator:
def __init__(self, text_trunc_length=1024):
self.converter = ReadableConverter(separator=' ; ')
self.tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased', use_fast=False, padding_side='right')
self.tokenizer.add_special_tokens({'pad_token': '<pad>'})
self.text_trunc_length = text_trunc_length
self.scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'])
def tokenize(self, gt_list, pred_list):
references = []
hypotheses = []
for gt, out in tqdm(zip(gt_list, pred_list)):
gt_tokens = self.tokenizer.tokenize(gt)
## added for galactica
gt_tokens = list(filter(('<pad>').__ne__, gt_tokens))
gt_tokens = list(filter(('[PAD]').__ne__, gt_tokens))
gt_tokens = list(filter(('[CLS]').__ne__, gt_tokens))
gt_tokens = list(filter(('[SEP]').__ne__, gt_tokens))
out_tokens = self.tokenizer.tokenize(out)
out_tokens = list(filter(('<pad>').__ne__, out_tokens))
out_tokens = list(filter(('[PAD]').__ne__, out_tokens))
out_tokens = list(filter(('[CLS]').__ne__, out_tokens))
out_tokens = list(filter(('[SEP]').__ne__, out_tokens))
references.append([gt_tokens])
hypotheses.append(out_tokens)
return references, hypotheses
@time_it
def __call__(self, gt_list, pred_list, use_tokenizer=False):
gt_list = [gt.strip() for gt in gt_list]
pred_list = [pred.strip() for pred in pred_list]
if use_tokenizer:
references, hypotheses = self.tokenize(gt_list, pred_list)
bleu2, bleu4 = self.bleu(references, hypotheses)
_meteor_score = self.meteor(references, hypotheses)
else:
bleu2 = modified_bleu(gt_list, pred_list, bleu_n=2)
bleu4 = modified_bleu(gt_list, pred_list, bleu_n=4)
_meteor_score = 0
rouge_1, rouge_2, rouge_l = self.rouge(gt_list, pred_list)
validity = self.validity(gt_list, pred_list)
acc_100, acc_90, acc_75, acc_50 = self.accuracy(gt_list, pred_list)
print('BLEU-2 score:', bleu2)
print('BLEU-4 score:', bleu4)
print('Average Meteor score:', _meteor_score)
print('rouge1:', rouge_1)
print('rouge2:', rouge_2)
print('rougeL:', rouge_l)
print(f'Validity: {validity:.6f}')
print(f'Accuracy (100): {acc_100:.6f}')
print(f'Accuracy (90): {acc_90:.6f}')
print(f'Accuracy (75): {acc_75:.6f}')
print(f'Accuracy (50): {acc_50:.6f}')
line = ''
for score in [validity, bleu2, bleu4, acc_100, acc_90, acc_75, acc_50, rouge_1, rouge_2, rouge_l, _meteor_score]:
line += f'{score:.6f} '
print(line)
return {
'bleu2': bleu2,
'bleu4': bleu4,
'rouge_1': rouge_1,
'rouge_2': rouge_2,
'rouge_l': rouge_l,
'meteor_score': _meteor_score,
'validity': validity,
'acc_100': acc_100,
'acc_90': acc_90,
'acc_75': acc_75,
'acc_50': acc_50,
}
def get_result_list(self, gt_list, pred_list, use_tokenizer=False):
gt_list = [gt.strip() for gt in gt_list]
pred_list = [pred.strip() for pred in pred_list]
if use_tokenizer:
references, hypotheses = self.tokenize(gt_list, pred_list)
bleu2 = [corpus_bleu([gt], [pred], weights=(.5,.5)) for gt, pred in zip(references, hypotheses)]
bleu4 = [corpus_bleu([gt], [pred], weights=(.25,.25,.25,.25)) for gt, pred in zip(references, hypotheses)]
_meteor_score = [meteor_score(gt, out) for gt, out in zip(references, hypotheses)]
else:
bleu2 = [modified_bleu([gt], [pred], bleu_n=2) for gt, pred in zip(gt_list, pred_list)]
bleu4 = [modified_bleu([gt], [pred], bleu_n=4) for gt, pred in zip(gt_list, pred_list)]
_meteor_score = 0
rouge_1, rouge_2, rouge_l = self.rouge(gt_list, pred_list, return_list=True)
lev_score = levenshtein_similarity(gt_list, pred_list)
return {
'bleu2': bleu2,
'bleu4': bleu4,
'rouge_1': rouge_1,
'rouge_2': rouge_2,
'rouge_l': rouge_l,
'meteor_score': _meteor_score,
'lev_score': lev_score,
}
def bleu(self, references, hypotheses):
bleu2 = corpus_bleu(references, hypotheses, weights=(.5,.5))
bleu4 = corpus_bleu(references, hypotheses, weights=(.25,.25,.25,.25))
bleu2 *= 100
bleu4 *= 100
return bleu2, bleu4
def meteor(self, references, hypotheses):
meteor_scores = []
for gt, out in zip(references, hypotheses):
mscore = meteor_score(gt, out)
meteor_scores.append(mscore)
_meteor_score = np.mean(meteor_scores)
_meteor_score *= 100
return _meteor_score
def rouge(self, targets, predictions, return_list=False):
rouge_scores = []
for gt, out in zip(targets, predictions):
rs = self.scorer.score(out, gt)
rouge_scores.append(rs)
rouge_1 = [rs['rouge1'].fmeasure for rs in rouge_scores]
rouge_2 = [rs['rouge2'].fmeasure for rs in rouge_scores]
rouge_l = [rs['rougeL'].fmeasure for rs in rouge_scores]
if return_list:
return rouge_1, rouge_2, rouge_l
rouge_1 = np.mean(rouge_1) * 100
rouge_2 = np.mean(rouge_2) * 100
rouge_l = np.mean(rouge_l) * 100
return rouge_1, rouge_2, rouge_l
def validity(self, gt_list, pred_list):
num_valid, n = 0, len(pred_list)
for pred, gt in zip(pred_list, gt_list):
try:
actions = self.converter.string_to_actions(pred)
max_token_pred = extract_reactant_cnt(pred)
max_token_gt = extract_reactant_cnt(gt)
assert max_token_gt >= max_token_pred
num_valid += 1
except:
pass
return 100*(num_valid / n)
def accuracy(self, gt_list, pred_list):
score_list = levenshtein_similarity(gt_list, pred_list)
acc_100 = 100*accuracy_score(score_list, 1.0)
acc_90 = 100*accuracy_score(score_list, 0.90)
acc_75 = 100*accuracy_score(score_list, 0.75)
acc_50 = 100*accuracy_score(score_list, 0.50)
return acc_100, acc_90, acc_75, acc_50
|