File size: 19,728 Bytes
95f97c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import os
from typing import Any, Dict
import torch
from model.blip2_opt import Blip2OPT
from model.blip2_llama import Blip2Llama
from model.blip2_t5 import Blip2T5
import pytorch_lightning as pl
from torch import optim
from lavis.common.optims import LinearWarmupCosineLRScheduler, LinearWarmupStepLRScheduler
import json
from model.opt_flash_attention import replace_opt_attn_with_flash_attn, replace_opt_attn_with_original_attn
import torch.distributed as dist
from peft import LoraConfig, TaskType
from model.help_funcs import caption_evaluate, AttrDict
from transformers import Adafactor
from torch_ema import ExponentialMovingAverage

def load_ignore_unexpected(model, state_dict):
    keys = set(model.state_dict().keys())
    state_dict = {k: v for k, v in state_dict.items() if k in keys}

    ## try to print keys that are not included
    model.load_state_dict(state_dict, strict=True)


# def load_ignore_mismatch(model, state_dict):
#     keys = set(model.state_dict().keys())
#     extra_keys = set()
#     for key in state_dict:
#         if key not in keys:
#             extra_keys.add(key)
#     missing_keys = set()
#     for key in keys:
#         if key not in state_dict:
#             missing_keys.add(key)
#     ## try to print keys that are not included
#     model.load_state_dict(state_dict, strict=False)


def get_module_state_dict(state_dict, module_name):
    module_state_dict = {}
    for key, value in state_dict.items():
        if key.startswith(module_name):
            key = key[len(module_name) + 1:]
            if key == '':
                return value
            module_state_dict[key] = value
    return module_state_dict
# peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)
class Blip2Model(pl.LightningModule):
    def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
        if self.llm_tune != 'full':
            to_be_removed = []
            for key in checkpoint['state_dict']:
                if key.startswith('blip2opt.opt_model') or key.startswith('blip2opt.llm_model'):
                    to_be_removed.append(key)
            for key in to_be_removed:
                checkpoint['state_dict'].pop(key)
        if isinstance(self.args.save_every_n_epochs, int) and self.args.save_every_n_epochs > 0:
            if self.llm_tune == 'lora' and (self.current_epoch + 1) % self.args.save_every_n_epochs == 0:
                if self.local_rank == 0: # manually fix a bug in peft module
                    if self.args.peft_config:
                        peft_config = LoraConfig(**LoraConfig.from_json_file(self.args.peft_config))
                    else:
                        peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=self.args.lora_r, lora_alpha=self.args.lora_alpha, lora_dropout=self.args.lora_dropout)
                    if hasattr(self.blip2opt, 'opt_model'):
                        self.blip2opt.opt_model.peft_config['default'] = peft_config
                        self.blip2opt.opt_model.save_pretrained(os.path.join(self.logger.save_dir, f'lora_epoch_{self.current_epoch}'))
                    elif hasattr(self.blip2opt, 'llm_model'):
                        self.blip2opt.llm_model.peft_config['default'] = peft_config
                        self.blip2opt.llm_model.save_pretrained(os.path.join(self.logger.save_dir, f'lora_epoch_{self.current_epoch}'))
        return super().on_save_checkpoint(checkpoint)

    def __init__(self, args):
        super().__init__()
        if isinstance(args, dict):
            args = AttrDict(**args)

        self.args = args
        if not hasattr(args, 'do_sample'):
            args.do_sample = False
        self.caption_eval_epoch = args.caption_eval_epoch
        self.do_sample = args.do_sample
        self.num_beams = args.num_beams
        self.max_inference_len = args.max_inference_len
        self.min_inference_len = args.min_inference_len
        self.num_generate_captions = args.num_generate_captions
        self.reaction_weight = args.reaction_weight
        self.llm_tune = args.llm_tune
        self.enable_flash = args.enable_flash
        if args.opt_model.find('galactica') >= 0:
            self.blip2opt = Blip2OPT(args.bert_name, args.gin_num_layers, args.gin_hidden_dim, args.drop_ratio, args.tune_gnn, not args.not_tune_qformer, args.num_query_token, args.cross_attention_freq, args.llm_tune, args.peft_dir, args.opt_model, args.prompt, args)
        elif args.opt_model.find('llama') >= 0 or args.opt_model.find('vicuna') >= 0:
            self.blip2opt = Blip2Llama(args.bert_name, args.gin_num_layers, args.gin_hidden_dim, args.drop_ratio, args.tune_gnn, args.num_query_token, args.cross_attention_freq, args.llm_tune, args.peft_dir, args.opt_model, args.prompt, args)
        elif args.opt_model.find('t5') >= 0:
            self.blip2opt = Blip2T5(args.bert_name, args.gin_num_layers, args.gin_hidden_dim, args.drop_ratio, args.tune_gnn, args.num_query_token, args.cross_attention_freq, args.llm_tune, args.peft_dir, args.opt_model, args.prompt, args)
        else:
            raise NotImplementedError()
        self.tokenizer = self.blip2opt.init_tokenizer()
        self.mode = args.mode
        self.downstream_task = args.downstream_task
        self.save_hyperparameters(args)
        self.save_ema_checkpoint = args.save_ema_checkpoint
        if self.save_ema_checkpoint:
            self.ema = ExponentialMovingAverage(self.parameters(), 0.99)
        self.save_on_steps = args.save_on_steps

    def load_from_stage1_checkpoint(self, path):
        ckpt = torch.load(path, map_location='cpu')
        state_dict = ckpt['state_dict']
        graph_encoder_dict = get_module_state_dict(state_dict, 'blip2qformer.graph_encoder')
        qformer_dict = get_module_state_dict(state_dict, 'blip2qformer.Qformer')
        ln_graph_dict = get_module_state_dict(state_dict, 'blip2qformer.ln_graph')
        qs_weight = get_module_state_dict(state_dict, 'blip2qformer.query_tokens')
        load_ignore_unexpected(self.blip2opt.Qformer, qformer_dict)
        self.blip2opt.graph_encoder.load_state_dict(graph_encoder_dict)
        self.blip2opt.ln_graph.load_state_dict(ln_graph_dict)
        self.blip2opt.query_tokens.data.copy_(qs_weight)
        return self

    # def load_from_stage1_checkpoint(self, path):
    #     ckpt = torch.load(path, map_location='cpu')
    #     state_dict = ckpt['state_dict']
    #     state_dict = {k[13:]: v for k,v in state_dict.items()}
    #     load_ignore_mismatch(self.blip2opt, state_dict)
    #     return self

    def configure_optimizers(self):
        if self.args.optimizer == 'adafactor':
            print('Using adafactor optimizer')
            optimizer = Adafactor(
                self.parameters(),
                lr=1e-3,
                relative_step=False,
                scale_parameter=False,
                warmup_init=False
            )
            self.scheduler = None
        else:
            self.trainer.fit_loop.setup_data()
            # self.trainer.reset_train_dataloader()
            warmup_steps = min(len(self.trainer.train_dataloader), self.args.warmup_steps)
            optimizer = optim.AdamW(self.parameters(), lr=self.args.init_lr, weight_decay=self.args.weight_decay)
            if self.args.scheduler == 'linear_warmup_cosine_lr':
                self.scheduler = LinearWarmupCosineLRScheduler(optimizer, self.args.max_epochs, self.args.min_lr, self.args.init_lr, warmup_steps, self.args.warmup_lr)
            elif self.args.scheduler == 'linear_warmup_step_lr':
                self.scheduler = LinearWarmupStepLRScheduler(optimizer, self.args.max_epochs, self.args.min_lr, self.args.init_lr, self.args.lr_decay_rate, self.args.warmup_lr, warmup_steps)
            elif self.args.scheduler == 'None':
                self.scheduler = None
            else:
                raise NotImplementedError()
        return optimizer

    def test_epoch_end(self, outputs):
        print('test epoch end')
        list_ids, list_predictions, list_targets = zip(*outputs)
        predictions = [i for ii in list_predictions for i in ii]
        targets = [i for ii in list_targets for i in ii]

        all_ids = [None for _ in range(self.trainer.world_size)]
        all_predictions = [None for _ in range(self.trainer.world_size)]
        all_targets = [None for _ in range(self.trainer.world_size)]

        dist.all_gather_object(all_ids, list_ids)
        dist.all_gather_object(all_predictions, predictions)
        dist.all_gather_object(all_targets, targets)
        print(len(all_ids), len(all_predictions), len(all_targets))
        if self.global_rank == 0:
            print(f'saveing predictions to {self.logger.log_dir}')

            all_predictions = [i for ii in all_predictions for i in ii]
            all_targets = [i for ii in all_targets for i in ii]
            self.save_predictions(all_ids, all_predictions, all_targets)
            ## fixme: I am not sure if the max length is the same as previous experiments
            bleu2, bleu4, rouge_1, rouge_2, rouge_l, meteor_score = \
                caption_evaluate(all_predictions, all_targets, self.tokenizer, self.max_inference_len * 2)
            self.log("bleu2", bleu2, sync_dist=False)
            self.log("bleu4", bleu4, sync_dist=False)
            self.log("rouge_1", rouge_1, sync_dist=False)
            self.log("rouge_2", rouge_2, sync_dist=False)
            self.log("rouge_l", rouge_l, sync_dist=False)
            self.log("meteor_score", meteor_score, sync_dist=False)

    def save_predictions(self, rxn_ids, predictions, targets):
        assert False
        assert len(rxn_ids) == len(targets)
        assert len(predictions) == len(targets)
        with open(os.path.join(self.logger.log_dir, 'predictions.txt'), 'w', encoding='utf8') as f:
            for i, p, t in zip(rxn_ids, predictions, targets):
                line = {'index': i, 'prediction': p, 'target': t}
                f.write(json.dumps(line, ensure_ascii=False) + '\n')

    @torch.no_grad()
    def test_step(self, batch, batch_idx):
        assert False

    def gather_dict_results(self, dict_list):
        list_of_dict_list = [None for _ in range(self.trainer.world_size)]
        dist.all_gather_object(list_of_dict_list, dict_list)
        dict_list = [i for ii in list_of_dict_list for i in ii] ## dict list, each dict has values that are lists of predictions, etc.
        keys = dict_list[0].keys()
        gathered_dict = {} # each value is a list of predictions, etc.
        for key in keys:
            gathered_dict[key] = [i for d in dict_list for i in d[key]]
        if self.num_generate_captions>1:
            M = self.num_generate_captions
            N = len(gathered_dict['index'])
            assert len(gathered_dict['predictions'])==N*M
            gathered_dict['predictions'] = [
                gathered_dict['predictions'][i * M:(i + 1) * M]
                for i in range(N)
            ]
        dict_list = []
        for i in range(len(gathered_dict['predictions'])):
            d = {k:gathered_dict[k][i] for k in keys}
            dict_list.append(d)
        return dict_list

    def save_results(self, dict_list, log_prefix=""):
        if log_prefix:
            name = f'{log_prefix}_predictions.txt'
        else:
            name = 'predictions.txt'
        with open(os.path.join(self.logger.log_dir, name), 'w', encoding='utf8') as f:
            for i in range(len(dict_list)):
                f.write(json.dumps(dict_list[i], ensure_ascii=True) + '\n')

    def on_validation_epoch_start(self):
        if self.enable_flash:
            replace_opt_attn_with_original_attn()
        self.saved_dict_list = []

    def on_validation_epoch_end(self):
        if self.enable_flash:
            replace_opt_attn_with_flash_attn()
        if (self.current_epoch+1) % self.caption_eval_epoch != 0:
            return 
        result_list = self.gather_dict_results(self.saved_dict_list)
        ## empty cache
        self.saved_dict_list = []
        if self.global_rank == 0:
            self.save_results(result_list, 'epoch_{}'.format(self.current_epoch))
            if self.downstream_task == 'synthesis':
                return
            all_predictions = [i['predictions'] for i in result_list]
            all_targets = [i['targets'] for i in result_list]
            bleu2, bleu4, rouge_1, rouge_2, rouge_l, meteor_score = \
                caption_evaluate(all_predictions, all_targets, self.tokenizer, self.max_inference_len * 2)
            self.log("bleu2", bleu2, sync_dist=False)
            self.log("bleu4", bleu4, sync_dist=False)
            self.log("rouge_1", rouge_1, sync_dist=False)
            self.log("rouge_2", rouge_2, sync_dist=False)
            self.log("rouge_l", rouge_l, sync_dist=False)
            self.log("meteor_score", meteor_score, sync_dist=False)

    @torch.no_grad()
    def validation_step(self, batch, batch_idx, dataloader_idx=1):
        if dataloader_idx == 0:
            return
        elif dataloader_idx == 1:
            if (self.current_epoch+1) % self.caption_eval_epoch != 0:
                return
            rxn_ids, graphs, prompt_tokens, texts, inputs = batch
            ###============== Captioning Results ===================###
            samples = {'graphs': graphs, 'prompt_tokens': prompt_tokens}
            if self.mode in {'ft', 'eval', 'pretrain_eval'}:
                predictions = self.blip2opt.generate(
                    samples,
                    do_sample=self.do_sample,
                    num_beams=self.num_beams,
                    max_length=self.max_inference_len,
                    min_length=self.min_inference_len,
                    num_captions=self.num_generate_captions,
                    use_graph=not self.args.disable_graphs
                )
            else:
                raise NotImplementedError()
            self.saved_dict_list.append({
                'index': rxn_ids,
                'input': inputs,
                'predictions': predictions,
                'targets': texts
            })
        else:
            raise NotImplementedError

    def on_train_start(self):
        if hasattr(self, 'ema'):
            self.ema.to(self.device)

    def on_before_zero_grad(self, *args, **kwargs):
        if self.save_ema_checkpoint:
            if self.trainer.global_step % 100 == 0:
                self.ema.update(self.parameters())
        if self.trainer.global_step in self.save_on_steps:
            checkpoint_path = os.path.join(f"all_checkpoints/{self.args.filename}/", f'step{self.trainer.global_step}.ckpt')
            self.trainer.save_checkpoint(checkpoint_path)

    def on_train_epoch_end(self):
        save_every_n_epochs = self.args.save_every_n_epochs if self.args.save_every_n_epochs > 0 else self.args.max_epochs
        if (self.current_epoch + 1) % save_every_n_epochs != 0:
            return
        if self.save_ema_checkpoint:
            with self.ema.average_parameters():
                checkpoint_path = os.path.join(f"all_checkpoints/{self.args.filename}/", f'ema_epoch{self.current_epoch}.ckpt')
                self.trainer.save_checkpoint(checkpoint_path)

    def training_step(self, batch, batch_idx):
        if self.scheduler:
            self.scheduler.step(self.trainer.current_epoch, self.trainer.global_step)

        batch_size = batch[-1].input_ids.size(0)
        ###============== Overall Loss ===================###
        if self.mode == 'ft':
            loss = self.blip2opt.forward_action(batch, use_gragh=not self.args.disable_graphs)
        elif self.mode == 'pretrain':
            loss = self.blip2opt.forward_abstract(batch, use_gragh=not self.args.disable_graphs)
        else:
            raise NotImplementedError()
        self.log("molecule loss", float(loss['loss']), batch_size=batch_size, sync_dist=True, prog_bar=True)
        self.log("lr", self.trainer.optimizers[0].param_groups[0]['lr'], batch_size=batch_size, sync_dist=True, prog_bar=True)
        return loss['loss']

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = parent_parser.add_argument_group("GINSimclr")
        # train mode
        # GIN
        parser.add_argument('--gin_hidden_dim', type=int, default=300)
        parser.add_argument('--gin_num_layers', type=int, default=5)
        parser.add_argument('--drop_ratio', type=float, default=0.0)
        parser.add_argument('--tune_gnn', action='store_true', default=False)
        parser.add_argument('--not_tune_qformer', action='store_true', default=False)
        parser.add_argument('--disable_graphs', action='store_true', default=False)
        # Bert
        parser.add_argument('--bert_hidden_dim', type=int, default=2048, help='')
        parser.add_argument('--bert_name', type=str, default='scibert')
        parser.add_argument('--cross_attention_freq', type=int, default=2)
        parser.add_argument('--num_query_token', type=int, default=8)
        # OPT
        parser.add_argument('--opt_model', type=str, default="facebook/galactica-1.3b")
        # parser.add_argument('--prompt', type=str, default='a molecule of ')
        parser.add_argument('--num_beams', type=int, default=5)
        parser.add_argument('--do_sample', action='store_true', default=False)
        parser.add_argument('--max_inference_len', type=int, default=512)
        parser.add_argument('--min_inference_len', type=int, default=8)
        parser.add_argument('--llm_tune', type=str, default='freeze')
        parser.add_argument('--peft_config', type=str, default=None)
        parser.add_argument('--peft_dir', type=str, default='')

        parser.add_argument('--save_every_n_epochs', type=int, default=0)
        ## quantization
        parser.add_argument('--load_in_8bit', action='store_true', default=False)

        ## lora config
        parser.add_argument('--lora_r', type=int, default=8)
        parser.add_argument('--lora_alpha', type=int, default=32)
        parser.add_argument('--lora_dropout', type=int, default=0.1)

        # optimization
        parser.add_argument('--reaction_weight', type=float, default=1.0)
        parser.add_argument('--weight_decay', type=float, default=0.05, help='optimizer weight decay')
        parser.add_argument('--init_lr', type=float, default=1e-4, help='optimizer init learning rate')
        parser.add_argument('--min_lr', type=float, default=1e-5, help='optimizer min learning rate')
        parser.add_argument('--warmup_lr', type=float, default=1e-6, help='optimizer warmup learning rate')
        parser.add_argument('--warmup_steps', type=int, default=1000, help='optimizer warmup steps')
        parser.add_argument('--lr_decay_rate', type=float, default=0.9, help='optimizer lr decay rate')
        parser.add_argument('--scheduler', type=str, default='linear_warmup_cosine_lr', help='type of scheduler') # or linear_warmup_step_lr
        parser.add_argument('--optimizer', type=str, default='adamw', help='type of scheduler')
        parser.add_argument('--init_checkpoint', type=str, default='')
        parser.add_argument('--caption_eval_epoch', type=int, default=10)
        parser.add_argument('--num_generate_captions', type=int, default=1)
        
        # OPT Config
        parser.add_argument('--optconfig_attention_dropout', type=float, default=0.0)
        parser.add_argument('--optconfig_dropout', type=float, default=0.0)

        # others
        parser.add_argument('--save_ema_checkpoint', action='store_true', default=False)
        parser.add_argument('--save_on_steps', default=[], nargs='+', type=int)
        return parent_parser