File size: 5,544 Bytes
95f97c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from utils import *
import torch
from rxnfp.transformer_fingerprints import (
    RXNBERTFingerprintGenerator, get_default_model_and_tokenizer, generate_fingerprints
)

class Reaction_model:
    def __init__(self, train_list, test_list):
        self.train_list = train_list
        self.test_list = test_list

        model, tokenizer = get_default_model_and_tokenizer()
        self.rxnfp_generator = RXNBERTFingerprintGenerator(model, tokenizer)
        
    @time_it
    def generate_random(self):
        pred = random.sample(self.train_list, k=len(self.test_list))
        pred = [i['actions'] for i in pred]
        return pred

    @time_it
    def generate_random_compatible_old(self):
        pred_list = []
        len_id_map = defaultdict(list)
        for train_rxn in self.train_list:
            len_id_map[len(train_rxn['extracted_molecules'])-1].append(train_rxn['index'])
        
        keys = sorted(k for k in len_id_map.keys())
        accumulated_counts = {}
        count = 0
        for key in keys:
            count += len(len_id_map[key])
            accumulated_counts[key] = count

        for rxn in self.test_list:
            test_token_num = len(rxn['extracted_molecules'])-1
            idx = random.randint(0, accumulated_counts[test_token_num] - 1)
            for key in keys:
                if idx < len(len_id_map[key]):
                    pred_list.append(self.train_list[len_id_map[key][idx]]['actions'])
                    break
                else:
                    idx -= len(len_id_map[key])
        return pred_list

    @time_it
    def generate_random_compatible(self):
        pred_list = []
        len_id_map = defaultdict(list)
        for train_rxn in self.train_list:
            len_id_map[len(train_rxn['extracted_molecules'])-1].append(train_rxn['index'])
        
        for rxn in self.test_list:
            mole_num = len(rxn['extracted_molecules'])-1
            pred_list.append(self.train_list[random.choice(len_id_map[mole_num])]['actions'])
        return pred_list
    
    @time_it
    def generate_nn(self, batch_size=2048):
        train_rxns = [f"{'.'.join(rxn['REACTANT'])}>>{rxn['PRODUCT'][0]}" for rxn in self.train_list]
        test_rxns = [f"{'.'.join(rxn['REACTANT'])}>>{rxn['PRODUCT'][0]}" for rxn in self.test_list]

        train_rxns_batches = [train_rxns[i:i+batch_size] for i in range(0, len(train_rxns), batch_size)]
        test_rxns_batches = [test_rxns[i:i+batch_size] for i in range(0, len(test_rxns), batch_size)]

        device = torch.device("cuda")
        train_fps = []
        for batch in tqdm(train_rxns_batches, desc='Generating fingerprints for training reactions'):
            batch_fps = self.rxnfp_generator.convert_batch(batch)
            train_fps.extend(batch_fps)
        train_fps = torch.tensor(train_fps, device=device) # N x 256

        most_similar_indices = []
        for batch in tqdm(test_rxns_batches, desc='Generating fingerprints for test reactions'):
            batch_fps = self.rxnfp_generator.convert_batch(batch)
            batch_fps = torch.tensor(batch_fps, device=device) # BS x 256
            batch_fps = batch_fps / torch.norm(batch_fps, dim=1, keepdim=True)

            similarity_matrix = torch.matmul(train_fps, batch_fps.T) # N x BS
            most_similar_indices.extend(torch.argmax(similarity_matrix, dim=0).tolist())

        return [self.train_list[i]['actions'] for i in most_similar_indices]

    def save_results(self, gt_list, pred_list, target_file):
        text_dict_list = [{
                "targets": gt,
                "indices": i,
                "predictions": pred,
            } for i, (gt, pred) in enumerate(zip(gt_list, pred_list))]

        with open(target_file, 'w') as f:
            json.dump(text_dict_list, f, indent=4)

def parse_args():
    parser = argparse.ArgumentParser(description="A simple argument parser")

    parser.add_argument('--name', default='none', type=str)
    parser.add_argument('--train_file', default=None, type=str)
    parser.add_argument('--test_file', default=None, type=str)
    parser.add_argument('--use_tok', default=False, action='store_true')
    args = parser.parse_args()
    return args

def read_dataset(args):
    print(f'Reading {args.train_file}...')
    with open(args.train_file, 'r', encoding='utf-8') as f:
        train_ds = json.load(f)
    print(f'{len(train_ds)} samples read.')
    print(f'Reading {args.test_file}...')
    with open(args.test_file, 'r', encoding='utf-8') as f:
        test_ds = json.load(f)
    print(f'{len(test_ds)} samples read.')
    return train_ds, test_ds

def run_baselines(args):
    set_random_seed(0)

    train_ds, test_ds = read_dataset(args)
    model = Reaction_model(train_ds, test_ds)
    calculator = Metric_calculator()
    gt_list = [i['actions'] for i in test_ds]
    
    print('Random:')
    pred_list = model.generate_random()
    calculator(gt_list, pred_list, args.use_tok)
    model.save_results(gt_list, pred_list, f'results/{args.name}/random.json')

    print('Random (compatible pattern):')
    pred_list = model.generate_random_compatible()
    calculator(gt_list, pred_list, args.use_tok)
    model.save_results(gt_list, pred_list, f'results/{args.name}/random_compatible.json')

    print('Nearest neighbor:')
    pred_list = model.generate_nn()
    calculator(gt_list, pred_list, args.use_tok)
    model.save_results(gt_list, pred_list, f'results/{args.name}/nn.json')
    # assert 0

if __name__ == "__main__":
    args=parse_args()
    run_baselines(args)