Spaces:
Runtime error
Runtime error
File size: 17,177 Bytes
95f97c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
from rdkit import Chem
import os
import argparse
from tqdm import tqdm
import multiprocessing
import pandas as pd
from rdkit import RDLogger
import re
from utils import *
lg = RDLogger.logger()
lg.setLevel(RDLogger.CRITICAL)
def extract_smiles(s):
start_token = "[START_SMILES]"
end_token = "[END_SMILES]"
start_index = s.find(start_token) + len(start_token)
end_index = s.find(end_token)
if start_index > -1 and end_index > -1:
return s[start_index:end_index].strip()
return s
def canonicalize_smiles_clear_map(smiles,return_max_frag=True):
mol = Chem.MolFromSmiles(smiles,sanitize=not opt.synthon)
if mol is not None:
[atom.ClearProp('molAtomMapNumber') for atom in mol.GetAtoms() if atom.HasProp('molAtomMapNumber')]
try:
smi = Chem.MolToSmiles(mol, isomericSmiles=False)
except:
if return_max_frag:
return '',''
else:
return ''
if return_max_frag:
sub_smi = smi.split(".")
sub_mol = [Chem.MolFromSmiles(smiles,sanitize=not opt.synthon) for smiles in sub_smi]
sub_mol_size = [(sub_smi[i], len(m.GetAtoms())) for i, m in enumerate(sub_mol) if m is not None]
if len(sub_mol_size) > 0:
return smi, canonicalize_smiles_clear_map(sorted(sub_mol_size,key=lambda x:x[1],reverse=True)[0][0],return_max_frag=False)
else:
return smi, ''
else:
return smi
else:
if return_max_frag:
return '',''
else:
return ''
def compute_rank(input_smiles, prediction,raw=False,alpha=1.0):
valid_score = [[k for k in range(len(prediction[j]))] for j in range(len(prediction))]
invalid_rates = [0 for k in range(len(prediction[0]))]
rank = {}
max_frag_rank = {}
highest = {}
if raw:
# no test augmentation
assert len(prediction) == 1
for j in range(len(prediction)):
for k in range(len(prediction[j])):
if prediction[j][k][0] == "":
invalid_rates[k] += 1
# error detection
de_error = [i[0] for i in sorted(list(zip(prediction[j], valid_score[j])), key=lambda x: x[1]) if i[0][0] != ""]
prediction[j] = list(set(de_error))
prediction[j].sort(key=de_error.index)
for k, data in enumerate(prediction[j]):
rank[data] = 1 / (alpha * k + 1)
else:
for j in range(len(prediction)): # aug_num, beam_size, 2
for k in range(len(prediction[j])):
# predictions[i][j][k] = canonicalize_smiles_clear_map(predictions[i][j][k])
if prediction[j][k][0] == "":
valid_score[j][k] = opt.beam_size + 1
invalid_rates[k] += 1
# error detection and deduplication
de_error = [i[0] for i in sorted(list(zip(prediction[j], valid_score[j])), key=lambda x: x[1]) if i[0][0] != ""]
prediction[j] = list(set(de_error))
prediction[j].sort(key=de_error.index)
for k, data in enumerate(prediction[j]):
if data in rank:
rank[data] += 1 / (alpha * k + 1)
else:
rank[data] = 1 / (alpha * k + 1)
if data in highest:
highest[data] = min(k,highest[data])
else:
highest[data] = k
for key in rank.keys():
rank[key] += highest[key] * -1
rank[key] += abs(len(key[0])-len(input_smiles)) * -0.2
rank[key] += len(key[0]) * -0.2
return rank,invalid_rates
def read_dataset(opt):
print(f'Reading {opt.path}...')
with open(opt.path, 'r', encoding='utf-8') as f:
test_tgt = [json.loads(line) for line in f.readlines()]
if opt.raw:
test_tgt = test_tgt[::opt.augmentation]
filtered_tgt = {}
idx_key = 'ds_idx' if 'ds_idx' in test_tgt[0] else 'index'
for dic in test_tgt:
if dic[idx_key] not in filtered_tgt:
filtered_tgt[dic[idx_key]] = dic
test_tgt = list(filtered_tgt.values())
test_tgt.sort(key=lambda x: x[idx_key])
print(f'{len(test_tgt)} samples read.')
input_list = [extract_smiles(i['input']) for i in test_tgt]
gt_list = [i['targets'].replace('[START_SMILES]', '').replace('[END_SMILES]', '').replace('SPL1T-TH1S-Pl3A5E','').strip().replace(' ','.') for i in test_tgt]
pred_list = [[smi.strip().replace(' ','.') for smi in i['predictions']] for i in test_tgt]
return input_list, gt_list, pred_list
def main(opt):
input_list, gt_list, pred_list = read_dataset(opt)
if opt.raw:
opt.augmentation=1
print('Reading predictions from file ...')
# inputs
print("Input Length", len(gt_list))
ras_src_smiles = input_list[::opt.augmentation]
with multiprocessing.Pool(processes=opt.process_number) as pool:
ras_src_smiles = pool.map(func=canonicalize_smiles_clear_map,iterable=ras_src_smiles)
ras_src_smiles = [i[0] for i in ras_src_smiles]
# predictions
print("Prediction Length", len(pred_list))
pred_lines = [i.split('>')[0] for d in pred_list for i in d]
data_size = len(pred_lines) // (opt.augmentation * opt.beam_size) if opt.length == -1 else opt.length
pred_lines = pred_lines[:data_size * (opt.augmentation * opt.beam_size)]
print("Canonicalizing predictions using Process Number ",opt.process_number)
with multiprocessing.Pool(processes=opt.process_number) as pool:
raw_predictions = pool.map(func=canonicalize_smiles_clear_map,iterable=pred_lines)
predictions = [[[] for j in range(opt.augmentation)] for i in range(data_size)] # data_len x augmentation x beam_size
for i, line in enumerate(raw_predictions):
predictions[i // (opt.beam_size * opt.augmentation)][i % (opt.beam_size * opt.augmentation) // opt.beam_size].append(line)
# ground truth
print("Origin Length", len(gt_list))
targets = [''.join(gt_list[i].strip().split(' ')) for i in tqdm(range(0,data_size * opt.augmentation,opt.augmentation))]
with multiprocessing.Pool(processes=opt.process_number) as pool:
targets = pool.map(func=canonicalize_smiles_clear_map, iterable=targets)
print("predictions Length", len(predictions), len(predictions[0]), len(predictions[0][0]))
print("Target Length", len(targets))
ground_truth = targets
print("Origin Target Lentgh, ", len(ground_truth))
print("Cutted Length, ",data_size)
print('\n')
accuracy = [0 for j in range(opt.n_best)]
topn_accuracy_chirality = [0 for _ in range(opt.n_best)]
topn_accuracy_wochirality = [0 for _ in range(opt.n_best)]
topn_accuracy_ringopening = [0 for _ in range(opt.n_best)]
topn_accuracy_ringformation = [0 for _ in range(opt.n_best)]
topn_accuracy_woring = [0 for _ in range(opt.n_best)]
total_chirality = 0
total_ringopening = 0
total_ringformation = 0
atomsize_topk = []
accurate_indices = [[] for j in range(opt.n_best)]
max_frag_accuracy = [0 for j in range(opt.n_best)]
invalid_rates = [0 for j in range(opt.beam_size)]
sorted_invalid_rates = [0 for j in range(opt.beam_size)]
unique_rates = 0
ranked_results = []
for i in tqdm(range(len(predictions))):
accurate_flag = False
if opt.detailed:
chirality_flag = False
ringopening_flag = False
ringformation_flag = False
pro_mol = Chem.MolFromSmiles(ras_src_smiles[i])
rea_mol = Chem.MolFromSmiles(ground_truth[i][0])
try:
pro_ringinfo = pro_mol.GetRingInfo()
rea_ringinfo = rea_mol.GetRingInfo()
pro_ringnum = pro_ringinfo.NumRings()
rea_ringnum = rea_ringinfo.NumRings()
size = len(rea_mol.GetAtoms()) - len(pro_mol.GetAtoms())
# if (int(ras_src_smiles[i].count("@") > 0) + int(ground_truth[i][0].count("@") > 0)) == 1:
if ras_src_smiles[i].count("@") > 0 or ground_truth[i][0].count("@") > 0:
total_chirality += 1
chirality_flag = True
if pro_ringnum < rea_ringnum:
total_ringopening += 1
ringopening_flag = True
if pro_ringnum > rea_ringnum:
total_ringformation += 1
ringformation_flag = True
except:
pass
# continue
inputs = input_list[i*opt.augmentation:(i+1)*opt.augmentation]
gt = gt_list[i*opt.augmentation:(i+1)*opt.augmentation]
rank, invalid_rate = compute_rank(ras_src_smiles[i], predictions[i], raw=opt.raw,alpha=opt.score_alpha)
rank_ = {k[0]: v for k, v in sorted(rank.items(), key=lambda item: item[1], reverse=True)}
if opt.detailed:
print('Index', i)
print('inputs', json.dumps(inputs, indent=4))
print('targets', json.dumps(gt, indent=4))
print('input', ras_src_smiles[i])
print('target', targets[i][0])
print('rank', json.dumps(rank_,indent=4))
print('invalid_rate', json.dumps(invalid_rate,indent=4))
print('\n')
for j in range(opt.beam_size):
invalid_rates[j] += invalid_rate[j]
rank = list(zip(rank.keys(),rank.values()))
rank.sort(key=lambda x:x[1],reverse=True)
rank = rank[:opt.n_best]
ranked_results.append([item[0][0] for item in rank])
for j, item in enumerate(rank):
if item[0][0] == ground_truth[i][0]:
if not accurate_flag:
accurate_flag = True
accurate_indices[j].append(i)
for k in range(j, opt.n_best):
accuracy[k] += 1
if opt.detailed:
atomsize_topk.append((size,j))
if chirality_flag:
for k in range(j,opt.n_best):
topn_accuracy_chirality[k] += 1
else:
for k in range(j,opt.n_best):
topn_accuracy_wochirality[k] += 1
if ringopening_flag:
for k in range(j,opt.n_best):
topn_accuracy_ringopening[k] += 1
if ringformation_flag:
for k in range(j,opt.n_best):
topn_accuracy_ringformation[k] += 1
if not ringopening_flag and not ringformation_flag:
for k in range(j,opt.n_best):
topn_accuracy_woring[k] += 1
if opt.detailed and not accurate_flag:
atomsize_topk.append((size,opt.n_best))
for j, item in enumerate(rank):
if item[0][1] == ground_truth[i][1]:
for k in range(j,opt.n_best):
max_frag_accuracy[k] += 1
break
for j in range(len(rank),opt.beam_size):
sorted_invalid_rates[j] += 1
unique_rates += len(rank)
for i in range(opt.n_best):
if i in [0,1,2,3,4,5,6,7,8,9,19,49]:
# if i in range(10):
print("Top-{} Acc:{:.3f}%, MaxFrag {:.3f}%,".format(i+1,accuracy[i] / data_size * 100,max_frag_accuracy[i] / data_size * 100),
" Invalid SMILES:{:.3f}% Sorted Invalid SMILES:{:.3f}%".format(invalid_rates[i] / data_size / opt.augmentation * 100,sorted_invalid_rates[i] / data_size / opt.augmentation * 100))
print(' '.join([f'{accuracy[i] / data_size * 100:.3f}' for i in [0,2,4,9]]))
print("Unique Rates:{:.3f}%".format(unique_rates / data_size / opt.beam_size * 100))
if opt.detailed:
print_topk = [1,3,5,10]
save_dict = {}
atomsize_topk.sort(key=lambda x:x[0])
differ_now = atomsize_topk[0][0]
topn_accuracy_bydiffer = [0 for _ in range(opt.n_best)]
total_bydiffer = 0
for i,item in enumerate(atomsize_topk):
if differ_now < 11 and differ_now != item[0]:
for j in range(opt.n_best):
if (j+1) in print_topk:
save_dict[f'top-{j+1}_size_{differ_now}'] = topn_accuracy_bydiffer[j] / total_bydiffer * 100
print("Top-{} Atom differ size {} Acc:{:.3f}%, Number:{:.3f}%".format(j+1,
differ_now,
topn_accuracy_bydiffer[j] / total_bydiffer * 100,
total_bydiffer/data_size * 100))
total_bydiffer = 0
topn_accuracy_bydiffer = [0 for _ in range(opt.n_best)]
differ_now = item[0]
for k in range(item[1],opt.n_best):
topn_accuracy_bydiffer[k] += 1
total_bydiffer += 1
for j in range(opt.n_best):
if (j + 1) in print_topk:
print("Top-{} Atom differ size {} Acc:{:.3f}%, Number:{:.3f}%".format(j + 1,
differ_now,
topn_accuracy_bydiffer[j] / total_bydiffer * 100,
total_bydiffer / data_size * 100))
save_dict[f'top-{j+1}_size_{differ_now}'] = topn_accuracy_bydiffer[j] / total_bydiffer * 100
for i in range(opt.n_best):
if (i+1) in print_topk:
if total_chirality > 0:
print("Top-{} Accuracy with chirality:{:.3f}%".format(i + 1, topn_accuracy_chirality[i] / total_chirality * 100))
save_dict[f'top-{i+1}_chilarity'] = topn_accuracy_chirality[i] / total_chirality * 100
print("Top-{} Accuracy without chirality:{:.3f}%".format(i + 1, topn_accuracy_wochirality[i] / (data_size - total_chirality) * 100))
save_dict[f'top-{i+1}_wochilarity'] = topn_accuracy_wochirality[i] / (data_size - total_chirality) * 100
if total_ringopening > 0:
print("Top-{} Accuracy ring Opening:{:.3f}%".format(i + 1, topn_accuracy_ringopening[i] / total_ringopening * 100))
save_dict[f'top-{i+1}_ringopening'] = topn_accuracy_ringopening[i] / total_ringopening * 100
if total_ringformation > 0:
print("Top-{} Accuracy ring Formation:{:.3f}%".format(i + 1, topn_accuracy_ringformation[i] / total_ringformation * 100))
save_dict[f'top-{i+1}_ringformation'] = topn_accuracy_ringformation[i] / total_ringformation * 100
print("Top-{} Accuracy without ring:{:.3f}%".format(i + 1, topn_accuracy_woring[i] / (data_size - total_ringopening - total_ringformation) * 100))
save_dict[f'top-{i+1}_wocring'] = topn_accuracy_woring[i] / (data_size - total_ringopening - total_ringformation)* 100
print(total_chirality)
print(total_ringformation)
print(total_ringopening)
# df = pd.DataFrame(list(save_dict.items()))
df = pd.DataFrame(save_dict,index=[0])
df.to_csv("detailed_results.csv")
if opt.save_accurate_indices != "":
with open(opt.save_accurate_indices, "w") as f:
total_accurate_indices = []
for indices in accurate_indices:
total_accurate_indices.extend(indices)
total_accurate_indices.sort()
# for index in total_accurate_indices:
for index in accurate_indices[0]:
f.write(str(index))
f.write("\n")
if opt.save_file != "":
with open(opt.save_file,"w") as f:
for res in ranked_results:
for smi in res:
f.write(smi)
f.write("\n")
for i in range(len(res),opt.n_best):
f.write("")
f.write("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='score.py',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--beam_size', type=int, default=10,help='Beam size')
parser.add_argument('--n_best', type=int, default=10,help='n best')
parser.add_argument('--path', type=str, required=True, help="Path to file containing the predictions and ground truth.")
parser.add_argument('--augmentation', type=int, default=20)
parser.add_argument('--score_alpha', type=float, default=1.0)
parser.add_argument('--length', type=int, default=-1)
parser.add_argument('--process_number', type=int, default=multiprocessing.cpu_count())
parser.add_argument('--synthon', action="store_true", default=False)
parser.add_argument('--detailed', action="store_true", default=False)
parser.add_argument('--raw', action="store_true", default=False)
parser.add_argument('--save_file', type=str,default="")
parser.add_argument('--save_accurate_indices', type=str,default="")
opt = parser.parse_args()
print(opt)
main(opt) |