from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig import gradio as gr from torch.nn import functional as F import seaborn import matplotlib import platform from transformers.file_utils import ModelOutput if platform.system() == "Darwin": print("MacOS") matplotlib.use('Agg') import matplotlib.pyplot as plt import io from PIL import Image import matplotlib.font_manager as fm # global var MODEL_NAME = 'yseop/distilbert-base-financial-relation-extraction' tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) config = AutoConfig.from_pretrained(MODEL_NAME) MODEL_BUF = { "name": MODEL_NAME, "tokenizer": tokenizer, "model": model, "config": config } font_dir = ['./'] for font in fm.findSystemFonts(font_dir): print(font) fm.fontManager.addfont(font) plt.rcParams["font.family"] = 'NanumGothicCoding' def change_model_name(name): MODEL_BUF["name"] = name MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name) MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name) MODEL_BUF["config"] = AutoConfig.from_pretrained(name) def predict(model_name, text): if model_name != MODEL_NAME: change_model_name(model_name) tokenizer = MODEL_BUF["tokenizer"] model = MODEL_BUF["model"] config = MODEL_BUF["config"] tokenized_text = tokenizer([text], return_tensors='pt') model.eval() output, attention = model(**tokenized_text, output_attentions=True, return_dict=False) output = F.softmax(output, dim=-1) result = {} for idx, label in enumerate(output[0].detach().numpy()): result[config.id2label[idx]] = float(label) return result if __name__ == '__main__': text = 'An A-B trust is a joint trust created by a married couple for the purpose of minimizing estate taxes.' model_name_list = [ 'yseop/distilbert-base-financial-relation-extraction' ] #Create a gradio app with a button that calls predict() app = gr.Interface( fn=predict, inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs=['label'], examples = [[MODEL_BUF["name"], text]], title="FReE", description="Financial relations classifier" ) app.launch(inline=False)