File size: 1,748 Bytes
94621a1
 
 
 
11a43f0
 
 
94621a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a43f0
 
94621a1
 
 
 
11a43f0
94621a1
 
11a43f0
 
 
 
 
 
 
94621a1
 
 
11a43f0
94621a1
 
 
11a43f0
 
 
 
5816f03
11a43f0
5816f03
11a43f0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import os
import openai
import gradio as gr
from gradio import ChatInterface
import time

# Get the value of the openai_api_key from environment variable
openai.api_key = os.getenv("OPENAI_API_KEY")

# Import things that are needed generically from langchain
from langchain import LLMMathChain, SerpAPIWrapper
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.chat_models import ChatOpenAI
from langchain.tools import BaseTool, StructuredTool, Tool, tool
from langchain.tools import MoveFileTool, format_tool_to_openai_function
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)
from langchain.utilities import WikipediaAPIWrapper
from langchain.tools import AIPluginTool

# Question- how can one set up a system message for their Chatbot while using ChatInterface
# Example system message : system = SystemMessage(content = "You are a helpful AI assistant")

# driver
def predict(user_input, chatbot):

    chat = ChatOpenAI(temperature=1.0, streaming=True, model='gpt-3.5-turbo-0613')
    messages=[]

    for conv in chatbot:
        human = HumanMessage(content=conv[0])
        ai = AIMessage(content=conv[1])
        messages.append(human)
        messages.append(ai)

    messages.append(HumanMessage(content=user_input))

    # getting gpt3.5's response
    gpt_response = chat(messages)
    return gpt_response.content



def echo_stream(message, history):
    for i in range(len(message)):
        time.sleep(0.3)
        yield message[:i]

ChatInterface(echo_stream).queue().launch(debug=True)

#chatbot = gr.Chatbot()
#gr.ChatInterface(predict, delete_last_btn="del").queue().launch(share=False, debug=True) #examples=["How are you?", "What's up?"],