Spaces:
Build error
Build error
File size: 2,168 Bytes
94621a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import gradio as gr
import os
import openai
import gradio as gr
# Get the value of the openai_api_key from environment variable
openai.api_key = os.getenv("OPENAI_API_KEY")
# Import things that are needed generically from langchain
from langchain import LLMMathChain, SerpAPIWrapper
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.chat_models import ChatOpenAI
from langchain.tools import BaseTool, StructuredTool, Tool, tool
from langchain.tools import MoveFileTool, format_tool_to_openai_function
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
from langchain.utilities import WikipediaAPIWrapper
from langchain.tools import AIPluginTool
# Setting up a system message for our Chatbot
#system = SystemMessage(content = "You are a helpful AI assistant") # that translates English to Pirate English.")
# driver
def predict(user_input, chatbot):
print(f"chatbot - {chatbot}")
print(f"user_input - {user_input}")
chat = ChatOpenAI(
#openai_api_key=openai_api_key,
temperature=1.0, #temperature, #1.0
streaming=True,
model='gpt-3.5-turbo-0613')
#messages = [system]
messages=[]
#function_call_decision = True if any(plugins) else False
if len(chatbot) != 0:
for conv in chatbot:
human = HumanMessage(content=conv[0])
ai = AIMessage(content=conv[1])
messages.append(human)
messages.append(ai)
messages.append(HumanMessage(content=user_input))
print(f"messages list is - {messages}")
else: # for first user message
messages.append(HumanMessage(content=user_input))
print(f"messages list is - {messages}")
# getting gpt3.5's response
gpt_response = chat(messages)
print(f"gpt_response - {gpt_response}")
bot_message = gpt_response.content
print(f"bot_message - {bot_message}")
chatbot.append((user_input, bot_message))
#return "", chatbot, None #"", chatbot
return bot_message
#chatbot = gr.Chatbot()
gr.ChatInterface(predict, delete_last_btn="del").launch(share=False, debug=True) #examples=["How are you?", "What's up?"], |