Spaces:
Runtime error
Runtime error
File size: 5,723 Bytes
632b406 ff60419 632b406 ff60419 632b406 ff60419 632b406 ff60419 632b406 ff60419 632b406 ff60419 632b406 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import os
import subprocess
from huggingface_hub import HfApi, upload_folder
import gradio as gr
import requests
from huggingface_hub import whoami, list_models
#Code for extracting the markdown fies from a Repo
#To get markdowns from github for any/your repo
def get_github_docs(repo_link):
repo_owner, repo_name = repo_link.split('/')[-2], repo_link.split('/')[-1]
with tempfile.TemporaryDirectory() as d:
subprocess.check_call(
f"git clone https://github.com/{repo_owner}/{repo_name}.git .",
cwd=d,
shell=True,
)
git_sha = (
subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d)
.decode("utf-8")
.strip()
)
repo_path = pathlib.Path(d)
markdown_files = list(repo_path.rglob("*.md")) + list(
repo_path.rglob("*.mdx")
)
for markdown_file in markdown_files:
try:
with open(markdown_file, "r") as f:
relative_path = markdown_file.relative_to(repo_path)
github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}"
yield Document(page_content=f.read(), metadata={"source": github_url})
except FileNotFoundError:
print(f"Could not open file: {markdown_file}")
#Code for creating a new space for the user
def create_space(repo_link, hf_token):
print("***********INSIDE CREATE SPACE***************")
repo_name = repo_link.split('/')[-1]
api = HfApi(token=hf_token)
repo_url = api.create_repo(
repo_id=f'LangChain_{repo_name}Bot', #example - ysharma/LangChain_GradioBot
repo_type="space",
space_sdk="gradio",
private=False)
#Code for creating the search index
#Saving search index to disk
def create_search_index(repo_link, openai_api_key):
print("***********INSIDE CREATE SEARCH INDEX***************")
#openai = OpenAI(temperature=0, openai_api_key=openai_api_key )
sources = get_github_docs(repo_link) #"gradio-app", "gradio"
source_chunks = []
splitter = CharacterTextSplitter(separator=" ", chunk_size=1024, chunk_overlap=0)
for source in sources:
for chunk in splitter.split_text(source.page_content):
source_chunks.append(Document(page_content=chunk, metadata=source.metadata))
search_index = FAISS.from_documents(source_chunks, OpenAIEmbeddings(openai_api_key=openai_api_key))
#saving FAISS search index to disk
with open("search_index.pickle", "wb") as f:
pickle.dump(search_index, f)
return "search_index.pickle"
def upload_files_to_space(repo_link, hf_token)
print("***********INSIDE UPLOAD FILES TO SPACE***************")
repo_name = repo_link.split('/')[-1]
#Replacing the repo namein app.py
with open("template/app_og.py", "r") as f:
app = f.read()
app = app.replace("$RepoName", reponame)
#app = app.replace("$space_id", whoami(token=token)["name"] + "/" + model_id.split("/")[-1])
#Saving the new app.py file to disk
with open("template/app.py", "w") as f:
f.write(app)
#Uploading the new app.py to the new space
api.upload_file(
path_or_fileobj = "template/app.py",
path_in_repo = "app.py",
repo_id = f'LangChain_{repo_name}Bot' #model_id,
token = hf_token,
repo_type="space",)
#Uploading the new search_index file to the new space
api.upload_file(
path_or_fileobj = "search_index.pickle",
path_in_repo = "search_index.pickle",
repo_id = f'LangChain_{repo_name}Bot' #model_id,
token = hf_token,
repo_type="space",)
#Upload requirements.txt to the space
api.upload_file(
path_or_fileobj="template/requirements.txt",
path_in_repo="requirements.txt",
repo_id=model_id,
token=token,
repo_type="space",)
#Deleting the files - search_index and app.py file
os.remove("template/app.py")
os.remove("search_index.pickle")
user_name = whoami(token=hf_token)['name']
repo_url = f"https://huggingface.co/spaces/{user_name}/LangChain_{repo_name}Bot"
space_name = f"{user_name}/LangChain_{repo_name}Bot"
return f"Successfully created the Chatbot at: <a href="+ repo_url + " target='_blank'>" + space_name + "</a>"
def driver(repo_link, hf_token):
#create search index openai_api_key=openai_api_key
#search_index_pickle = create_search_index(repo_link, openai_api_key)
#create a new space
print("***********INSIDE DRIVER***************")
create_space(repo_link, hf_token)
#upload files to the new space
html_tag = upload_files_to_space(repo_link, hf_token)
print(f"html tag is : {html_tag}")
return html_tag
#Gradio code for Repo as input and search index as output file
with gr.Blocks() as demo:
with gr.Row():
repo_link = gr.Textbox(label="Enter Github repo name")
hf_token_in = gr.Textbox(type='password', label="Enter hf-token name")
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here")
with gr.Row():
btn_faiss = gr.Button("Create Search index")
btn_create_space = gr.Button("Create YOur Chatbot")
html_out = gr.HTML()
search_index_file = gr.File()
btn_faiss.click(create_search_index, [repo_link, openai_api_key],search_index_file )
btn_create_space.click(driver, [repo_link, hf_token_in], html_out
demo.queue()
demo.launch(debug=True) |