Spaces:
Runtime error
Runtime error
File size: 7,509 Bytes
1e192c1 632b406 1e192c1 632b406 1e192c1 632b406 1e192c1 ff60419 632b406 ff60419 632b406 ff60419 9f8ef80 ff60419 8ebee43 ff60419 aa9cb91 ff60419 25be809 5cb8f3c ff60419 b74ea6d ff60419 5cb8f3c ff60419 5cb8f3c ff60419 632b406 5cb8f3c f968014 ff60419 8ebee43 3328298 ff60419 3328298 632b406 ff60419 632b406 4ed10c6 f3287a1 8ebee43 f3287a1 4ed10c6 3328298 ff60419 3328298 ff60419 3328298 ff60419 44d42d1 af39889 632b406 af39889 632b406 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
from langchain.llms import OpenAI
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain.docstore.document import Document
import requests
import pathlib
import subprocess
import tempfile
import os
import gradio as gr
import pickle
from huggingface_hub import HfApi, upload_folder
from huggingface_hub import whoami, list_models
# using a vector space for our search
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores.faiss import FAISS
from langchain.text_splitter import CharacterTextSplitter
#Code for extracting the markdown fies from a Repo
#To get markdowns from github for any/your repo
def get_github_docs(repo_link):
repo_owner, repo_name = repo_link.split('/')[-2], repo_link.split('/')[-1]
with tempfile.TemporaryDirectory() as d:
subprocess.check_call(
f"git clone https://github.com/{repo_owner}/{repo_name}.git .",
cwd=d,
shell=True,
)
git_sha = (
subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d)
.decode("utf-8")
.strip()
)
repo_path = pathlib.Path(d)
markdown_files = list(repo_path.rglob("*.md")) + list(
repo_path.rglob("*.mdx")
)
for markdown_file in markdown_files:
try:
with open(markdown_file, "r") as f:
relative_path = markdown_file.relative_to(repo_path)
github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}"
yield Document(page_content=f.read(), metadata={"source": github_url})
except FileNotFoundError:
print(f"Could not open file: {markdown_file}")
#Code for creating a new space for the user
def create_space(repo_link, hf_token):
repo_name = repo_link.split('/')[-1]
api = HfApi(token=hf_token)
repo_url = api.create_repo(
repo_id=f'LangChain_{repo_name}Bot', #example - ysharma/LangChain_GradioBot
exist_ok = True,
repo_type="space",
space_sdk="gradio",
private=False)
#Code for creating the search index
#Saving search index to disk
def create_search_index(repo_link, openai_api_key):
sources = get_github_docs(repo_link)
source_chunks = []
splitter = CharacterTextSplitter(separator=" ", chunk_size=1024, chunk_overlap=0)
for source in sources:
for chunk in splitter.split_text(source.page_content):
source_chunks.append(Document(page_content=chunk, metadata=source.metadata))
search_index = FAISS.from_documents(source_chunks, OpenAIEmbeddings(openai_api_key=openai_api_key))
#saving FAISS search index to disk
with open("search_index.pickle", "wb") as f:
pickle.dump(search_index, f)
return "search_index.pickle"
def upload_files_to_space(repo_link, hf_token):
repo_name = repo_link.split('/')[-1]
api = HfApi(token=hf_token)
user_name = whoami(token=hf_token)['name']
#Replacing the repo namein app.py
with open("template/app_og.py", "r") as f:
app = f.read()
app = app.replace("$RepoName", repo_name)
#Saving the new app.py file to disk
with open("template/app.py", "w") as f:
f.write(app)
#Uploading the new app.py to the new space
api.upload_file(
path_or_fileobj = "template/app.py",
path_in_repo = "app.py",
repo_id = f'{user_name}/LangChain_{repo_name}Bot', #model_id,
token = hf_token,
repo_type="space",)
#Uploading the new search_index file to the new space
api.upload_file(
path_or_fileobj = "search_index.pickle",
path_in_repo = "search_index.pickle",
repo_id = f'{user_name}/LangChain_{repo_name}Bot', #model_id,
token = hf_token,
repo_type="space",)
#Upload requirements.txt to the space
api.upload_file(
path_or_fileobj="template/requirements.txt",
path_in_repo="requirements.txt",
repo_id=f'{user_name}/LangChain_{repo_name}Bot', #model_id,
token=hf_token,
repo_type="space",)
#Deleting the files - search_index and app.py file
os.remove("template/app.py")
os.remove("search_index.pickle")
repo_url = f"https://huggingface.co/spaces/{user_name}/LangChain_{repo_name}Bot"
space_name = f"{user_name}/LangChain_{repo_name}Bot"
return "<p style='color: orange; text-align: center; font-size: 24px; background-color: lightgray;'>🎉Congratulations🎉 Chatbot created successfully! Access it here : <a href="+ repo_url + " target='_blank'>" + space_name + "</a></p>"
def driver(repo_link, hf_token):
#create search index openai_api_key=openai_api_key
#search_index_pickle = create_search_index(repo_link, openai_api_key)
#create a new space
create_space(repo_link, hf_token)
#upload files to the new space
html_tag = upload_files_to_space(repo_link, hf_token)
print(f"html tag is : {html_tag}")
return html_tag
def set_state():
return gr.update(visible=True), gr.update(visible=True)
#Gradio code for Repo as input and search index as output file
with gr.Blocks() as demo:
gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
QandA Chatbot Creator for Github Repos - Automation done using LangChain, Gradio, and Spaces
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Generate a top-notch <b>Q&A Chatbot</b> for your Github Repo, using <a href="https://langchain.readthedocs.io/en/latest/" target="_blank">LangChain</a> and <a href="https://github.com/gradio-app/gradio" target="_blank">Gradio</a>.
Paste your Github repository link, enter your OpenAI API key, and the app will create a FAISS embedding vector space for you.
Next, input your Huggingface Token and press the final button.<br><br>
Your new chatbot will be ready under your Huggingface profile, accessible via the displayed link.
<center><a href="https://huggingface.co/spaces/ysharma/LangchainBot-space-creator?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a></center>
</p>
</div>""")
with gr.Row() :
with gr.Column():
repo_link = gr.Textbox(label="Enter Github repo name")
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here")
btn_faiss = gr.Button("Create Search index")
search_index_file = gr.File(label= 'Search index vector')
with gr.Row():
hf_token_in = gr.Textbox(type='password', label="Enter hf-token name", visible=False)
btn_create_space = gr.Button("Create Your Chatbot", visible=False)
html_out = gr.HTML()
btn_faiss.click(create_search_index, [repo_link, openai_api_key],search_index_file )
btn_faiss.click(fn=set_state, inputs=[] , outputs=[hf_token_in, btn_create_space])
btn_create_space.click(driver, [repo_link, hf_token_in], html_out)
demo.queue()
demo.launch(debug=True) |