from langchain.llms import OpenAI from langchain.chains.qa_with_sources import load_qa_with_sources_chain from langchain.docstore.document import Document import requests import pathlib import subprocess import tempfile import os import gradio as gr import pickle from huggingface_hub import HfApi, upload_folder from huggingface_hub import whoami, list_models # using a vector space for our search from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores.faiss import FAISS from langchain.text_splitter import CharacterTextSplitter #Code for extracting the markdown fies from a Repo #To get markdowns from github for any/your repo def get_github_docs(repo_link): repo_owner, repo_name = repo_link.split('/')[-2], repo_link.split('/')[-1] with tempfile.TemporaryDirectory() as d: subprocess.check_call( f"git clone https://github.com/{repo_owner}/{repo_name}.git .", cwd=d, shell=True, ) git_sha = ( subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d) .decode("utf-8") .strip() ) repo_path = pathlib.Path(d) markdown_files = list(repo_path.rglob("*.md")) + list( repo_path.rglob("*.mdx") ) for markdown_file in markdown_files: try: with open(markdown_file, "r") as f: relative_path = markdown_file.relative_to(repo_path) github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}" yield Document(page_content=f.read(), metadata={"source": github_url}) except FileNotFoundError: print(f"Could not open file: {markdown_file}") #Code for creating a new space for the user def create_space(repo_link, hf_token): repo_name = repo_link.split('/')[-1] api = HfApi(token=hf_token) repo_url = api.create_repo( repo_id=f'LangChain_{repo_name}Bot', #example - ysharma/LangChain_GradioBot exist_ok = True, repo_type="space", space_sdk="gradio", private=False) #Code for creating the search index #Saving search index to disk def create_search_index(repo_link, openai_api_key): sources = get_github_docs(repo_link) source_chunks = [] splitter = CharacterTextSplitter(separator=" ", chunk_size=1024, chunk_overlap=0) for source in sources: for chunk in splitter.split_text(source.page_content): source_chunks.append(Document(page_content=chunk, metadata=source.metadata)) search_index = FAISS.from_documents(source_chunks, OpenAIEmbeddings(openai_api_key=openai_api_key)) #saving FAISS search index to disk with open("search_index.pickle", "wb") as f: pickle.dump(search_index, f) return "search_index.pickle" def upload_files_to_space(repo_link, hf_token): repo_name = repo_link.split('/')[-1] api = HfApi(token=hf_token) user_name = whoami(token=hf_token)['name'] #Replacing the repo namein app.py with open("template/app_og.py", "r") as f: app = f.read() app = app.replace("$RepoName", repo_name) #Saving the new app.py file to disk with open("template/app.py", "w") as f: f.write(app) #Uploading the new app.py to the new space api.upload_file( path_or_fileobj = "template/app.py", path_in_repo = "app.py", repo_id = f'{user_name}/LangChain_{repo_name}Bot', #model_id, token = hf_token, repo_type="space",) #Uploading the new search_index file to the new space api.upload_file( path_or_fileobj = "search_index.pickle", path_in_repo = "search_index.pickle", repo_id = f'{user_name}/LangChain_{repo_name}Bot', #model_id, token = hf_token, repo_type="space",) #Upload requirements.txt to the space api.upload_file( path_or_fileobj="template/requirements.txt", path_in_repo="requirements.txt", repo_id=f'{user_name}/LangChain_{repo_name}Bot', #model_id, token=hf_token, repo_type="space",) #Deleting the files - search_index and app.py file os.remove("template/app.py") os.remove("search_index.pickle") repo_url = f"https://huggingface.co/spaces/{user_name}/LangChain_{repo_name}Bot" space_name = f"{user_name}/LangChain_{repo_name}Bot" return "
🎉Congratulations🎉 Chatbot created successfully! Access it here : " + space_name + "
" def driver(repo_link, hf_token): #create search index openai_api_key=openai_api_key #search_index_pickle = create_search_index(repo_link, openai_api_key) #create a new space create_space(repo_link, hf_token) #upload files to the new space html_tag = upload_files_to_space(repo_link, hf_token) print(f"html tag is : {html_tag}") return html_tag def set_state(): return gr.update(visible=True), gr.update(visible=True) #Gradio code for Repo as input and search index as output file with gr.Blocks() as demo: gr.HTML("""
Generate a top-notch Q&A Chatbot for your Github Repo, using LangChain and Gradio.
Paste your Github repository link, enter your OpenAI API key, and the app will create a FAISS embedding vector space for you.
Next, input your Huggingface Token and press the final button.
Your new chatbot will be ready under your Huggingface profile, accessible via the displayed link.